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ABSTRACT: The presence of distinct social groups within an animal population can result in heterogeneity 
in many aspects of its life history and ecology. The ability to accurately assess social group membership 
increases with the number of times individuals are identified, but obtaining sufficient sightings of rarely 
encountered species can be difficult. Three social clusters were previously identified for the endangered 
population of false killer whales Pseudorca crassidens around the main Hawaiian Islands, using modularity 
among associations within a 12 yr photographic dataset with no restrictions on the number of times seen. In this 
study, we used photo-identification data over a 23 yr period to reassess the number and membership of social 
clusters, restricted to individuals seen on at least 5 different days. We compared the robustness of clustering 
assignments from 6 community detection algorithms using modularity and found that the 3 highest-ranking 
algorithms all identified the same number (4) and membership of social clusters. Spatial use of clusters var-
ied among the islands, with 3 of the 4 clusters encountered regularly only off 1 or 2 of the 3 main island 
study areas. Comparison of genetic differentiation among social clusters revealed significant differentia-
tion in nuclear DNA. Furthermore, all individuals in 2 of the clusters possess the same mitochondrial DNA 
haplotype, while in the other 2 clusters, approximately 40% of animals possess a second haplotype. This level 
of clustering and associated heterogeneity within the population may have implications for mark−recapture 
abundance estimation, as well as for mitigating exposure to anthropogenic activities, including interactions 
with fisheries.  
 
HŌ‘ULU‘ULU MANA‘O: Pili nā ‘ano like ‘ole o ka nohona a me ke kālaikaiaola o nā pū‘uo holoholona i ka 
loa‘a ‘ana o nā pū‘ulu kiko‘ī. Pi‘i a‘e ka hiki ke helu kūpono‘ia ka māhuahua ‘ana o nā heluna o ia mau 
pū‘ulu i ka helu ‘ana i nā wā e ‘ike ‘ia ai kēlā me kēia holoholona, ‘o ka lawa ‘ana na‘e o ka ‘ike ‘ana i nā 
lāhulu ‘ane halapohe kekahi ālaina. Hō‘ia ‘ia ‘ekolu pū‘ulu o ke koholā ‘ane halapohe, ‘o ka Pseudorca 
crassidens, a puni nā mokupuni nui ‘ewalu o Hawai‘i, ma ka ho‘owae‘anona ‘ana i ka pilina i loko o kekahi 
‘ikepili ki‘a he ‘umikūmālua makahiki me ke kāohi ‘ole i ka nui o ka ‘ike ‘ia ‘ana. Ma kēia kilo ‘ana, ua 
ho‘ohana mākou i ka ‘ikepili ma o nā makahiki he iwakāluakūmākolu i mea e hō‘oia hou ai i ka heluna a 
me nā lālā o nā pū‘ulu launa i loko o kekahi pū‘uo holoholona, a pāpā ‘ia nā kālailaina i nā mea i ‘ike ‘ia ma 
‘elima mau lā  ‘oko‘a ma ka li‘ili‘i loa. Ho‘ohālikelike mākou i ke ‘ano me ka ikaika o kēia mau pū‘ulu launa 
ma ka ho‘ohana ‘ana i ka ho‘owae‘anona ‘ana ma ‘eono pū‘ulu ha‘ilula a ‘o ka mea i loa‘a, ‘o ia ho‘i ka ‘ike 
‘ana, ma o nā ha‘ilula nui ‘ekolu, i ka heluna a me ka lālā ho‘okahi o nā pū‘ulu launa. Loli ka ho‘ohana ‘ana 
i ke koana o nā pū‘ulu ma waena o nā mokupuni, ‘ike ‘ia ‘ekolu pū‘ulu ma ho‘okahi a ‘elua paha mokupuni 
mai loko mai o nā mokupuni nui ‘ekolu e kālailai ‘ia ana. Ma ka ho‘ohālikelike ‘ana aku i nā hi‘ohi‘ona 
ōewe ‘oko‘a o nā pū‘ulu launa, ‘ike ‘ia ka ‘oko‘a ‘ano nui ma ka piko ōewe o nā pū‘ulu. A no laila, loa‘a i nā 
mea a pau o ia mau pū‘ulu ‘elua ke ōewe ho‘oilina ho‘okahi, a ma nā pū‘ulu ‘ē a‘e ‘elua, loa‘a he hi‘ohi‘ona 
ōewe ‘elua i nā holoholona he 40 pākēneka. Hiki nō paha i kēia ‘ano ho‘opū‘ulu ‘ana me kēia ‘ano 
wae‘anona ōewe ho‘opili ma kekahi pū‘uo ke pili i ke kuhi ‘ana i ka nui ma ka hopu kaha ‘ana, a i ke kāohi 
a ho‘ēmi ‘ana mai i nā hopena o nā hana kanaka, e la‘a ho‘i me ka hana ma ke kai lawai‘a.  
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1.  INTRODUCTION 

Social networks represent patterns of associations 
among individuals. Preferential long-term associa-
tions among individuals within a population can lead 
to the presence of discrete clusters within social net-
works, referred to as ‘communities’ in network an -
alyses. A well-studied example of social organization 
comes from killer whales Orcinus orca, long-lived 
social odontocetes in which clusters are typically 
referred to as ‘pods’. These pods are semi-permanent 
groupings of related individuals (Baird & Whitehead 
2000, Beck et al. 2012, Esteban et al. 2016) that may 
exhibit group-specific variability in demography 
(e.g. Brault & Caswell 1993), spatial use (e.g. Olsen et 
al. 2018), foraging strategies (e.g. Baird & Dill 1995), 
and interactions with fisheries (e.g. Tixier et al. 
2017), among other traits.  

False killer whales Pseudorca crassidens are also 
long-lived social odontocetes (with a life span of up 
to 63 yr, based on tooth sectioning; Ferreira et al. 
2014) known to have enduring bonds among individ-
uals (Baird et al. 2008, Baird 2016). Individuals are 
slow to reproduce and slow to mature; life history 
data collected from drive fisheries in Japan indicate 
that females reach sexual maturity between 8 and 
10.5 yr of age, males mature roughly between the 
ages of 10.5 and 18.5 yr, and individuals of both sexes 
continue growing until 25−30 yr of age (Ferreira et 
al.  2014). Females have relatively low pregnancy 
rates when compared to 8 other species of delphinids 
(though comparable to a population of killer whales) 
and are one of a few mammalian species thought to 
undergo a lengthy post-reproductive period (Fer-
reira et al. 2014, Photopoulou et al. 2017). Social net-
work analyses of the main Hawaiian Islands insular 
population of false killer whales have previously 
been used to identify ‘social clusters’ that are largely 
analogous to killer whale ‘pods’ (Baird et al. 2012, 
Martien et al. 2019). Based on long-term photo-
identification, genetic analyses, and movement data 
from satellite tags, this population is known to reside 
around the main Hawaiian Islands and is demo-
graphically isolated from 2 other populations of false 
killer whales with partially overlapping ranges 
(Baird et al. 2008, 2012, 2013, Martien et al. 2014). 
The main Hawaiian Islands insular population was 
listed as federally endangered in 2012 (National 
Oceanic and Atmospheric Administration 2012), due 
to a combination of population decline and a number 
of anthropogenic threats (Baird & Gorgone 2005, 
Reeves et al. 2009, Ylitalo et al. 2009, Oleson et al. 
2010). The abundance of this population was esti-

mated using photo-identification and open mark–
recapture methods at 167 individuals (SE = 23) in 
2015 (Bradford et al. 2018). 

Previous analyses of association patterns for this 
population used an eigenvector-based modularity 
method (Newman 2004, 2006) to identify social clus-
ters (hereafter referred to as clusters). As with many 
studies of social organization, association rates among 
individuals were estimated using an association index, 
effectively, the proportion of time pairs of individuals 
spend associated in the same social group (Cairns & 
Schwager 1987). Patterns of repeated associations 
over time are typically used to describe the social 
structure of a population (Hinde 1976), and one com-
monly accepted method to detect socially meaningful 
clusters within a population or social network is 
through modularity optimization (Girvan & Newman 
2002, Newman & Girvan 2004). This approach groups 
individuals within a network in such a way as to 
maximize the within-cluster rates of association and 
minimize those between clusters (Newman 2004, 
2006, Shizuka & Farine 2016). The maximum modu-
larity value is the proportion of connections between 
individuals (referred to as edges in social network 
analyses) within a cluster relative to the expected 
proportion of within-cluster connections if associa-
tions were random. 

The earlier study analyzed 1174 identifications 
from 50 945 photos from this population taken be -
tween 2000 and 2011 and found 7 clusters within the 
main Hawaiian Islands insular false killer whale pop-
ulation, with 3 main clusters (termed Clusters 1, 2, 
and 3) and 4 peripheral clusters (Baird et al. 2012). 
The peripheral clusters were believed to be primarily 
composed of individuals that had been born or died 
partway through the study and thus had limited 
encounter rates, although these clusters could also 
have reflected social groups seen so infrequently that 
there was insufficient power to accurately assess 
association patterns (Baird et al. 2012). Importantly, 
this analysis was restricted to distinctive and very 
distinctive individuals but was not restricted to indi-
viduals seen on multiple occasions, potentially influ-
encing the interpretation of association patterns. 
Restricting the number of days an individual has 
been seen is important when determining the num-
ber and membership of social clusters, as including 
individuals sampled infrequently will introduce un -
certainty that can obscure or bias underlying pat-
terns (Whitehead 2008a). 

Genetic comparisons of the 3 main clusters identi-
fied by Baird et al. (2012) suggested that cluster 
membership is stable over time, with limited disper-
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sal of individuals between clusters. Martien et al. 
(2014, 2019) found significant genetic differentiation 
in mitochondrial DNA between Cluster 3, in which 
all individuals possess the same haplotype (termed 
haplotype 1), and Clusters 1 and 2, in which approx-
imately 40% of individuals possess a second haplo-
type (termed haplotype 2). Nuclear DNA showed 
weak, but statistically significant, differentiation 
among all 3 clusters (Martien et al. 2014), suggesting 
limited dispersal of individuals between clusters. 
Similarly, Martien et al. (2019) used these 3 clusters 
when examining genetic relatedness and found that 
individuals within clusters were closely related, with 
mating occurring both within and between clusters, 
but found evidence of strong fidelity to the natal clus-
ter in both males and females. 

Subsequent analyses all have shown that aspects 
of this population’s biology vary by cluster. For exam-
ple, using sighting histories for individuals available 
from 1986 to 2010 and satellite tag data from 2007 to 
2010, Baird et al. (2012) reported differences in spa-
tial use among individuals from 2 of the clusters. 
Whales from Cluster 1 preferentially used areas off 
northwest Moloka‘i, southwest Lāna‘i, and north of 
Hawai‘i Island, while whales from Cluster 3 primarily 
used areas north of Maui and Moloka‘i (Baird et al. 
2012). Baird et al. (2012) did not have sufficient data 
to characterize habitat use of whales from Cluster 2, 
although a later analysis did reveal differences from 
Clusters 1 and 3 (Baird et al. 2019). For the purposes 
of mark−recapture abundance estimation, Bradford 
et al. (2018) used cluster as a covariate, with individ-
uals in the peripheral clusters assigned to 1 of the 3 
main clusters based on their highest level of associa-
tion. Bradford et al. (2018) found that capture proba-
bility varied by cluster, with particularly low esti-
mates for Clusters 2 and 3, consistent with their low 
sighting rates (Baird et al. 2021). Overall, previous 
studies indicate the importance of these strong asso-
ciations between individuals in interpreting other 
aspects of the biology of this endangered population, 
emphasizing the need for an updated assessment of 
association patterns. 

Since the analyses by Baird et al. (2012), directed 
research effort and community scientist contributions 
for this population have increased, allowing for fur-
ther examination of social structure. Baird et al. 
(2019) undertook an analysis using 2484 identifica-
tions from 162 651 photos available from February 
2000 through April 2019, and identified 9 clusters in 
this population using the same methods as the earlier 
study. When restricted to individuals seen on 3 or 
more occasions with dyadic half-weight association 

indices of 0.3 or greater, 5 clusters were apparent 
(Baird et al. 2019), with 2 of the 5 comprising prima-
rily individuals that had been in 2 of the peripheral 
clusters first identified by Baird et al. (2012). This 
suggests that the frequency of encounters of some 
social groups in the analyses by Baird et al. (2012) 
was insufficient to tease apart the existence of these 
clusters. A better understanding of spatial use from 
satellite tag deployments has also allowed for more 
targeted field efforts to focus on poorly sampled 
social groups. Using satellite tag data from 2009 to 
2018, Baird et al. (2019) reported that whales from 
Cluster 2 preferentially used areas off southeast 
Maui and west and north of Hawai‘i Island and 
whales from Cluster 4 primarily used areas off north-
west Moloka‘i, south and west Lāna‘i, and southeast 
O‘ahu. 

Here, we use an expanded and updated photo-
identification dataset that includes sightings of main 
Hawaiian Islands insular false killer whales from 
1999 through 2021 to assess the number and mem-
bership of social clusters within this population. Im -
portantly, this larger dataset increases the number of 
sightings available for each individual, and thus the 
number of individuals that meet a threshold for inclu-
sion in the study. Previous analyses of false killer 
whale social clustering only used a single method, 
eigenvector-based modularity (Newman 2004, 2006), 
to determine the number and membership of social 
clusters (Baird et al. 2012, 2019). Here, we compared 
metrics from 6 community detection algorithms, com-
bined with a method to assess the robustness of the 
clustering assignments (Shizuka & Farine 2016), to 
determine the best approach for assessing the num-
ber and membership of social clusters in this popula-
tion. These analyses will help inform ongoing efforts 
to estimate abundance and examine trends of this 
endangered population, as well as allow for more 
robust analyses of cluster-specific spatial use, trophic 
ecology, fisheries interactions, and age structure. 

2.  METHODS 

2.1.  Data sources and defining groups 

Data used in the current study were taken from a 
long-term photo-identification study of main Hawai-
ian Islands insular false killer whales led by Cascadia 
Research Collective (CRC) and updated here to in -
clude directed research from the Pacific Whale Foun-
dation (PWF), the National Marine Fisheries Service’s 
(NMFS) Pacific Islands Fisheries Science Center 
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(PIFSC), and opportunistic sightings from a variety of 
sources. We restricted analyses to begin in 1999 
(although the first photos from this population were 
available in 1986; Baird et al. 2008), which excludes 
an early period with a number of year-long or multi-
year gaps in encounters and with very strong spatial 
biases in effort, with almost all photos only from 
Hawai‘i Island. Photographs were primarily obtained 
from small-vessel surveys undertaken throughout 
the main Hawaiian Islands, with most effort in lee-
ward (west and southwest) waters (Fig. 1). Directed 
surveys by CRC were typically undertaken each year 
off 2 or 3 of the 4 different main island areas (i.e. 
Kaua‘i and Ni‘ihau, O‘ahu, Maui and Lāna‘i, and 
Hawai‘i Island) (e.g. Baird et al. 2008, 2012), while 
surveys by PWF were typically undertaken periodi-
cally throughout the year off Maui Nui (a region con-
sisting of the islands of Maui, Lāna‘i, Moloka‘i, and 
Kaho‘olawe) (e.g. Stack et al. 2019). PIFSC under-
took directed research off O‘ahu between 2009 and 
2021 and also worked with this population during 
large-scale surveys throughout the main Hawaiian 
Islands (e.g. Bradford et al. 2020). While these sur-
veys involved working with a number of different 

species, false killer whales were always a high prior-
ity species, and attempts were made to remain with a 
group of false killer whales as long as possible and 
obtain photos of all individuals present. During CRC 
and PIFSC surveys, efforts were made in some cases 
to deploy satellite tags, obtain drone footage, and/or 
collect skin/blubber biopsies using a remote-biopsy 
system (pole spear or crossbow). Photographs ob -
tained from opportunistic sightings throughout the 
islands were provided by researchers working on 
other species or by community scientists, primarily 
individuals working with ocean tour operations. 

False killer whales were often observed in large 
aggregations composed of smaller sub-groups spread 
over up to 20 km and generally moving in the same 
direction at a similar rate of speed (Baird et al. 2008, 
Bradford et al. 2014). Baird et al. (2008) reported a 
significant positive relationship between encounter 
duration and group size; encounters lasting less than 
2 h had a median of 7 individuals (range: 3−15) while 
encounters lasting more than 2 h had a median of 25 
individuals (range: 12−41). Therefore, groups were 
defined as all individuals encountered or sighted in a 
particular day off one side (e.g. leeward side) of an 
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Fig. 1. Main Hawaiian Islands, showing all quantifiable effort tracklines from 1999 to 2021; data from Cascadia Research Col-
lective (red), Pacific Whale Foundation (blue), and Pacific Islands Fisheries Science Center (gray). Sighting locations (when  

available) are shown as points
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island area. There were no cases where groups of 
false killer whales were seen on both the windward 
and leeward side of a particular island on the same 
day. While our definition of a group is more expan-
sive than what has been used in studies of other 
cetacean species, it follows the description by White-
head (2008a, p. 297) of ‘sets of animals that actively 
achieve or maintain spatiotemporal proximity over 
any time scale and within which most interactions 
occur’. It is also similar to a definition used by Par-
sons et al. (2009) and Foster et al. (2012) for killer 
whales, where individuals photographed in the same 
channel of water and within 10 km of each other 
were assumed to be within range for acoustic com-
munication and thus associated. During line-transect 
surveys conducted by NMFS for the purpose of abun-
dance estimation, Bradford et al. (2014) reported 
group en counters of false killer whales from the 
pelagic and Northwestern Hawaiian Islands insular 
populations that spanned up to 35 km and were com-
posed of up to 18 subgroups. 

2.2.  Photo-identification 

Photos taken during group encounters were manu-
ally sorted by individual, matched, and added to the 
photo-identification catalog using the methodology 
described by Baird et al. (2008, 2012). Individuals 
within each group encounter were rated on a scale of 
1 to 4 for increasing levels of photo quality (1 = poor, 
2 = fair, 3 = good, 4 = excellent) and dorsal fin distinc-
tiveness (1= not distinctive, 2 = slightly distinctive, 
3 = distinctive, 4 = very distinctive) following Baird 
et  al. (2008). Because distinctiveness generally in -
creases over time as an individual acquires changes 
to the fin, individuals were assigned their highest 
distinctiveness rating for use in the analysis. While 
not appropriate for analyses that rely on specific 
assumptions about capture probability (e.g. mark−
recapture abundance estimation), using the highest 
distinctiveness rating increases the number of en -
counters for some individuals and thus duration of 
individual sighting histories, providing a more repre-
sentative pattern of associations and increasing the 
number of individuals included in the study. 

As well as including sightings after the 2012 study, 
additional photos taken during 1999−2011 contributed 
by other research groups and community scientists 
that had not been previously available were added to 
the catalog. Given the potential for new photographs 
to reveal missed matches, previously obscured due 
to  limitations in photo quality, lack of sightings, or 

changes to the fin, all individuals were carefully 
compared against the entire catalog to look for any 
internal matches (i.e. the same individual assigned 
2 or more IDs in the catalog). Any potential internal 
matches were reviewed and confirmed by a second 
experienced matcher. Additionally, older records of 
non-distinctive and slightly distinctive individuals 
were re-examined to determine whether new infor-
mation on scarring obtained from recent sightings 
and historical contributions could be used to identify 
internal matches. Non-distinctive individuals (based 
on a lack of nicks and notches on the dorsal fin) were 
matched and added to the catalog whenever possible 
using continuity of secondary or superficial scarring 
on the dorsal fin and body. Non-distinctive individu-
als were almost always smaller than associated adult-
sized individuals and were considered to be depend-
ent calves if seen in repeated association with a known 
or likely (based on morphology and sighting history) 
adult female. While Baird et al. (2008) noted that 
matching non-distinctive individuals within an en -
counter required excellent quality photos and was 
not possible between encounters, subsequent ad -
vances in digital camera technology have made 
this feasible in some cases (e.g. Elliser et al. 2022). 
Given the small size of the population, emphasis 
was  placed on matching every individual photo -
graphed, including calves and juveniles, in order 
to  inform current and future studies of social and 
population structure. 

2.3.  Associations and defining social clusters 

In order to determine how individuals in the popu-
lation associate, we used the association strength 
(a  measure of co-occurrence termed an association 
index) among pairs of individuals to see whether 
individuals in the population preferentially associate 
to form clusters or communities. We used a correla-
tion coefficient to assess how well association indices 
reflect true associations and measured the social 
complexity or social differentiation of the population 
(i.e. how much variation exists in the proportion of 
time pairs of individuals spend associated) to esti-
mate how likely individuals in the population were to 
form clusters. We then constructed social clusters 
using 6 competing algorithms (Table 1) and compared 
them using measures of robustness and modularity 
to determine how well the clusters from the top-
ranking algorithms reflected true association pat-
terns. Finally, we used a Mantel test to compare rela-
tive association strength within and between clusters 
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and examined the demographics and haplotypes for 
each cluster. 

Association analyses were undertaken both in 
SOCPROG 2.9 (Whitehead 2009) using MATLAB 
(MATLAB 2016) and in R v. 4.2.1 (R Core Team 
2022). In both, dyadic (pair-wise) associations were 
measured on a scale of 0−1.0 (ranging from individu-
als never seen in association to individuals always 
associated) with a half-weight index (HWI) to ac -
count for situations where not all individuals were 
photographed and identified (Cairns & Schwager 
1987, Whitehead 2008a, Farine 2013). Individuals 
were considered associated if they were in the same 
group (see above). Data used to analyze associations 
and determine the most appropriate clustering algo-
rithm (see below) were restricted to individuals seen 
on 5 or more days and considered at least slightly dis-
tinctive (highest distinctiveness ≥2) with fair or better 
quality photos (photo quality ≥2) (hereafter referred 

to as the restricted dataset) to minimize errors associ-
ated with lower quality data (Whitehead 2008a). The 
decision to include slightly distinctive individuals 
and fair photo qualities was based in part on the 
characteristics of the study population (i.e. a small 
resident population with limited range composed of 
well-known individuals), all of which increase cap-
ture probability (Urian et al. 2015). As mentioned, 
uncertainty associated with less well-known individ-
uals was reduced by restricting analyses to individu-
als seen on at least 5 days. 

Three additional types of analyses were under-
taken in SOCPROG on the restricted dataset. First, 
the level of social differentiation (S) of a population 
(i.e. the coefficient of variation of the true association 
indices) measures how widely association indices 
vary within the study population. Measures of S of 
<0.3, >0.5 to <2.0, and >2.0 indicate homogeneous, 
well differentiated, and extremely well differentiated 
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Community detection algorithm          Approach      Optimization      Description/references 
‘Assignment’ function in ‘igraph’                                     method 
 
Leading Eigenvector                               Divisive          Modularity        A spectral partitioning method that divides the network  
‘leading.eigenvector.community’                                                             into communities based on the eigenvectors of the  
                                                                                                                     largest positive eigenvalues within a modularity matrix,  
                                                                                                                     which is defined as the adjacency matrix of the network  
                                                                                                                     minus the probability of edges being present between  
                                                                                                                     each dyad in a random network where the degree of  
                                                                                                                     each node matches the actual network (Newman 2006) 

Edge Betweenness                                  Divisive          Modularity        Divides the network into communities by calculating 
‘Edge.betweenness.community’                                                               edge betweenness then iteratively removing edges with 
                                                                                                                     the highest edge betweenness score and recalculating  
                                                                                                                     modularity after each removal (Newman & Girvan 2004) 

Label Propagation                                     Label              Network         Algorithm based on label propagation, where each node 
‘Label.propagation.community’         propagation        structure         is assigned a unique label, then repeatedly updated with  
                                                                                                                     those used by most of the node’s neighbors to identify  
                                                                                                                     communities. Does not use an optimization measure;  
                                                                                                                     instead, nodes with the same labels are considered part  
                                                                                                                     of the same community (Raghavan et al. 2007) 

Fastgreedy                                          Agglomerative    Modularity        Greedy optimization algorithm that uses an adjacency  
‘Fastgreedy.community’                                                                            matrix to repeatedly merge individuals into communities  
                                                                                                                     where each vertex is a community of one and each is  
                                                                                                                     repeatedly joined until a single community exists  
                                                                                                                     (Clauset et al. 2004) 

Walktrap                                             Agglomerative    Modularity        Grouping nodes into communities based on the distance  
‘Walktrap.community’                                                                               between nodes using random walks, and merging  
                                                                                                                     communities using Ward’s method (Pons & Latapy 2005) 

Louvain                                               Agglomerative    Modularity        Heuristic hierarchical algorithm divided into 2 phases  
‘Cluster_louvain’                                                                                        that each optimize modularity: (1) treats individuals as  
                                                                                                                     nodes and assigns them to communities and (2) treats  
                                                                                                                     resulting communities as nodes and aggregates them to  
                                                                                                                     build a new network (Blondel et al. 2008)

Table 1. Description of 6 community detection algorithms tested to assess social structure in main Hawaiian Islands false killer  
whales. Algorithms were tested in R using the ‘assignment’ function in the ‘igraph’ package



Mahaffy et al.: Hawai‘i false killer whale social clusters

societies, respectively (Whitehead 2008a,b). Social dif -
ferentiation was estimated using maximum likelihood 
within SOCPROG (Whitehead 2008a,b). Al though 
not biased by sampling regime, social differentiation 
is a measure applied to the entire study population, 
and can be artificially inflated by the presence of dis-
tinct communities (i.e. clusters) that may themselves 
lack differentiation (Whitehead 2008a,b). To deter-
mine whether the level of S is affected by clusters, 
social differentiation was estimated for each cluster 
after determining the best clustering algorithm (see 
below), then averaged and compared to the popula-
tion-wide estimate. Second, the ability of S to detect 
variation in the social system (i.e. how association 
rates vary among dyads) was estimated using a cor-
relation coefficient scaled from 0.0 (not helpful) to 1.0 
(extremely helpful) between the true association 
indices and those generated using the HWI. Preci-
sion was assessed using standard errors (SEs) from 
100 bootstrap replications. Third, once the most ap -
propriate community (i.e. cluster) detection algorithm 
was determined, clusters generated were as sessed 
to determine whether association rates significantly 
differed within and between clusters (i.e. whether 
within-cluster associations were strong compared to 
those between clusters) using a Mantel test with 1000 
permutations and expressed as a t-value, p-value, 
and matrix correlation coefficient. 

Subsequent analyses were all undertaken in R on 
the restricted dataset. To determine the number and 
membership of clusters in the population, we tested 
6 different community detection algorithms (Table 1) 
using community assignment functions within the 
‘igraph’ package in R (v.1.3.4) (Csardi & Nepusz 2006), 
and then used an approach outlined by Shizuka & 
Farine (2016) to determine which algorithm best rep-
resents actual social groups (i.e. clusters) within the 
restricted dataset. Five of the 6 community assign-
ment functions tested were designed to optimize 
modularity using a divisive (2 functions) or agglomer-
ative (3 functions) approach, and 1 function (based 
on label propagation) used network structure rather 
than modularity optimization to detect communities. 
The algorithms we selected are among the most 
widely used and are considered ‘state-of-the-art’ for 
community detection (Yang et al. 2016). 

For each algorithm, the modularity of the particular 
cluster assignment was calculated using the modu-
larity (Q) function in the ‘igraph’ package, with val-
ues greater than 0.3 indicating that clusters are use-
ful in describing how individuals in the population 
associate (Newman 2004, Csardi & Nepusz 2006). 
The robustness of community assignments was meas-

ured through community assortativity (rcom) and cal-
culated in R using the ‘igraph’, ‘assortnet’ (v. 0.12), 
and ‘asnipe’ (v. 1.1.16) packages for each cluster 
assignment method with 1000 bootstrap replications 
(Csardi & Nepusz 2006, Farine 2014, 2016, Shizuka & 
Farine 2016). This method resamples observations of 
groups with replacement and generates new com-
munity assignments. As noted by Shizuka & Farine 
(2016), the value of rcom is 1 when all bootstrap repli-
cates provide the same community assignments and 
approaches 0 when community assignments in the 
replicates are random compared to the original net-
work. We used a combination of modularity and com-
munity assortativity values to choose the most appro-
priate (best) algorithm for determining the number of 
clusters and cluster membership. A weighted social 
network diagram was used to visualize associations 
within the study population for the algorithm with 
the highest modularity and rcom values. In each dia-
gram, individuals are represented by nodes, with 
cluster membership indicated by node color and 
shape, and the thickness of the line or edge between 
nodes indicating association strength. Probability 
plots for the top 3 algorithms were generated in 
‘igraph’ and represent how often individuals were 
assigned to different clusters in bootstrap replicate 
networks, where the length of the line connecting 
nodes represents the probability that nodes shared a 
community assignment in bootstrap replicates, with 
closer nodes more likely to share community assign-
ments across replicates. Histograms were also con-
structed to evaluate variation in the number of com-
munities generated in bootstrap replicates for each 
community assignment algorithm. 

Once the best clustering algorithm was chosen and 
clusters were defined, we removed the restriction on 
the number of days seen (hereafter referred to as the 
relaxed dataset). The relaxed dataset was used to 
examine within-cluster demographics and distribu-
tion of mitochondrial haplotypes, and to compare 
cluster assignments among datasets with different 
sets of restrictions (included in Table A1 in the 
Appendix). We also analyzed the complete or unre-
stricted dataset (i.e. with no restrictions on number of 
days seen, fin distinctiveness, or photo quality) in 
order to assign all individuals to clusters to compare 
genetic differentiation among clusters. In these latter 
cases, individuals grouped in clusters using the 
restricted dataset were retained in those clusters 
even if the analyses using the relaxed and complete 
datasets resulted in some individuals switching clus-
ter membership, as the clusters constructed from the 
restricted dataset were considered more robust. 

255
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However, a review of cluster assignments among all 
3 datasets found that only a single individual in the 
relaxed and unrestricted datasets changed cluster 
(Table A1). Cluster membership identified in the cur-
rent study was compared to the 3 main and 4 periph-
eral clusters identified by Baird et al. (2012), as well 
as to 5 clusters identified by Baird et al. (2019) using 
photos available at the time from 2000 through April 
2019 but with more relaxed restrictions. 

To determine whether individuals demonstrated 
long-term fidelity to their cluster, we binned the data 
into 2 roughly equal time periods (1999−2010 and 
2011−2021) and used the best clustering algorithm 
(see above) to generate clusters for a modified ver-
sion of the restricted dataset (restricted to slightly 
distinctive with fair or better photo quality but 
requiring individuals to be seen on 3 or more days 
instead of 5, given smaller number of encounters in 
each of the 2 time periods). Comparison of cluster 
membership to assess long-term fidelity was re -
stricted to the cluster with the largest number of 
encounters over the period 1999−2021, as cluster 
assignment accuracy should increase with the num-
ber of times individuals are seen. 

2.4.  Demographic and genetic assessment by  

social cluster 

We examined demographics (age class, sex) by 
cluster for both the restricted and relaxed datasets 
(1999−2021) using cluster membership determined 
by the best clustering method. This analysis was not 
to provide a demographic breakdown by cluster, but 
rather to assess whether clusters were of mixed age 
and sex, instead of being composed of only a single 
sex or limited age class (e.g. all adult males, or all 
females and calves). Given the duration of the study, 
for each cluster we used age class at the most recent 
sighting of each individual in order to include as 
many individuals as possible. Thus, it should be 
noted that we do not describe the age structure of 
each cluster at a particular point in time, since some 
individuals were born or died part way through the 
study, or were otherwise not seen in recent years. 
Four age classes were assigned following the method-
ology of Kratofil et al. (2022), which used the entire 
sighting history of the animal and considered sev-
eral factors: (1) the amount of scarring on the dorsal 
fin or body (assuming scars accumulate with age, 
heavily marked animals are more likely to be older), 
(2) size relative to known adults when photographed 
in the same photo, and (3) repeated association with 

an adult presumed or known (from parentage, see 
Martien et al. 2019) to be the mother. Individuals 
were considered calves if they were seen in close, 
consistent association with the presumed mother and 
were estimated to be less than half her total length. 
Calves were assumed to be less than 3 yr of age. 
Juveniles were seen in association with the pre-
sumed mother but were at least half of her length. 
Juveniles were estimated to be 3−6 yr old for fe -
males and 3−9 yr for males. Subadults were often but 
not always seen traveling in loose association with 
the presumed mother and were slightly smaller in 
length. Sub adults were estimated to be 6−9 yr for 
females and 9−14 yr for males. All other individuals 
were assumed to be adults. For comparisons, we 
pooled subadults, juveniles, and calves due to uncer-
tainty in age class estimates associated with some 
younger individuals. Sex was determined geneti-
cally (see Martien et al. 2014) for 141 individuals. For 
27 adults for which genetic sex was not available, sex 
was determined through a combination of life history 
information (such as calf presence for adult fe males) 
and morphology (such as head shape and presence of 
a leading-edge hump on the dorsal fin in adult males) 
visible in photos (see Kratofil et al. 2022). 

We also reassessed the genetic differentiation 
between clusters reported by Martien et al. (2014, 
2019) to determine whether the patterns of differen-
tiation they observed were robust to the updated 
social cluster assignments. We re-stratified the mito-
chondrial haplotype and nuclear microsatellite data 
presented by Martien et al. (2014) based on the 
results of the best clustering method on the restricted 
dataset. As in the study by Martien et al. (2014), biop-
sied individuals were incorporated in this assessment 
regardless of the number of times seen or whether 
they were distinctive. In addition, we included haplo-
type data for 55 individuals that were sequenced 
subsequent to the study by Martien et al. (2014). 
Biopsied individuals that were not included in the 
restricted dataset were assigned to clusters based on 
analysis of the complete dataset. Sequencing meth-
ods were identical to those used by Martien et al. 
(2014). We used the ‘strataG’ package (Archer et al. 
2017) in R v. 4.2.0 (R Core Team 2022) to calculate 
ΦST for the mitochondrial data and both FST and F ’ST 
for the nuclear data, and assessed statistical signifi-
cance in both datasets using a χ2 permutation test 
with 1000 permutations. 

R code used in association and community assorta-
tivity analyses and figure generation is included in 
the Supplement at www.int-res.com/articles/suppl/
n051p249_supp.pdf and is available on the CRC Git -

https://www.int-res.com/articles/suppl/n051p249_supp.pdf
https://www.int-res.com/articles/suppl/n051p249_supp.pdf
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Hub page (https://github.com/cascadiaresearch/FKW-
Social-Clusters-2023/). 

3.  RESULTS 

Between 1999 and 2021, false killer whales from 
the main Hawaiian Islands insular population were 
photographed on 416 days, resulting in 3429 identifi-
cations of 349 individuals from 230 933 photos. When 
restricted to group encounters with at least 1 individ-
ual meeting our minimum photo quality and distinc-
tiveness criteria (i.e. the relaxed dataset), there were 
group encounters on 382 days, with 2915 identifica-
tions of 292 individuals. Of these, identifications 
were obtained predominantly by CRC (1196), Wild 
Side Specialty Tours (366), PWF (286), Wild Whale 
Research Foundation (213), Hawai‘i Whale Re -
search Foundation (152), and NMFS 
(141), with the remaining 561 identi-
fications contributed by 66 different 
organizations and individuals. Encoun-
ters took place throughout the islands, 
but over 99% of sightings and photo-
graphic identifications were obtained 
from O‘ahu, Maui Nui, and Hawai‘i 
Island (Fig. 2A). The number of iden-
tifications available varied consider-
ably by year (Fig. 2B). The median 
number of individuals identified per 
group was 5 (range: 1−47). Individual 
sighting histories varied dramatically; 
the number of days individuals were 
observed ranged from 1 to 62 (mean = 
9.7, SD = 10.6), and individuals were 
seen over periods ranging from less 
than a year to the entire study period 
(23 yr). Restricting analyses to individ-
uals seen on 5 or more days (i.e. the 
restricted dataset) resulted in 2639 
identifications of 174 individuals from 
376 group encounters. 

3.1.  Community (cluster) assignments 

Maximum likelihood methods ap -
plied to the re stricted dataset indi-
cated a well-differentiated society (S = 
1.149, SE = 0.023), and results from 
the cor relation coefficient indicated 
that the data were moderately repre-
sentative of true associations (r = 0.569, 

SE = 0.024). The 6 community assignment functions 
generated 4 to 6 (mode = 4) clusters, with modularity 
ranging from 0.578 to 0.605, and rcom (community 
assortativity) ranging from 0.913 to 0.968 (Table 2). 
The 3 community assignment algorithms that had the 
highest modularity and rcom values (Louvain, Fast-
greedy, and Walktrap in decreasing order) produced 
identical results in terms of number (4) and composi-
tion of clusters: 62 individuals in Cluster 1, 15 individu-
als in Cluster 2, 60 individuals in Cluster 3 (which 
included the individuals from Cluster 5 identified by 
Baird et al. 2019), and 37 individuals in Cluster 4 
(Table 2, Fig. 3A). Cluster membership be tween the 
current study and the clusters identified by Baird et 
al. (2012) showed little change from Clusters 1, 2, and 
3. Of the 4 peripheral clusters identified by Baird et 
al. (2012), 2 were absorbed into Cluster 3, and 2 were 
combined to form Cluster 4 in the current study. 
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Fig. 2. Breakdown of photographic identifications (including within-year re-
sightings) (A) by island area and (B) by year, restricted to individuals that were 
considered at least slightly distinctive with fair or better photo quality (i.e. the  

relaxed dataset)
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Although there was minor variation in cluster 
assignments for the other 3 clustering methods, all 
indicated the presence of 3 social clusters which 
are consistent with previously identified Clusters 1, 
3 (combined with the previously identified Cluster 
5), and 4 (Table 2). Additionally, all but one com-
munity assignment algorithm identified the previ-
ously identified Cluster 2, with the remaining algo -
rithm (Leading Eigenvector, which had the lowest 
modularity value) splitting Cluster 2 into 2 separate 
clusters (Table 2). A comparison of cluster number 
and membership between the restricted, relaxed, 
and complete datasets indicated that clusters were 
robust to change. Only one individual, a male, 
switched cluster (from Cluster 3 to Cluster 1) when 
restrictions were relaxed and/or removed, and one 
new cluster of 5 individuals (all of which were 
seen once in 2002 and were associated with indi-
viduals from Cluster 2) was identified in the com-

plete dataset (Table A1). Three of the 5 individuals 
from this new cluster were younger animals (calves 
and juveniles) that were either not distinctive or 
slightly distinctive and had poor or fair quality 
photos; the 2 remaining individuals were considered 
very distinctive adults with fair or good quality 
photos. Cluster 2 had the lowest number of sight-
ings and identifications of any cluster (Table 3), in -
creasing the length of time between sightings and, 
consequently, the likelihood of missing a match 
due to mark change, particularly in younger in -
dividuals. The uncertainty around this new cluster 
(rarely seen individuals and poor-quality data) is a 
good example of why the restricted dataset was 
used in most analyses. 

The distribution of clusters in bootstrap replicates 
for the 3 top-ranking algorithms was similar, with 
the vast majority of bootstraps indicating 4 clusters 
(Fig.  4). A Mantel test indicated that within-cluster 
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Algorithm                                          Clusters    Modularity       rcom                                    Individuals per cluster 
                                                                                    (Q)                                     Cluster 1       Cluster 2       Cluster 3/5      Cluster 4 
 
Cluster_louvain()                                     4               0.605          0.968               62                  15                    60                  37 
Fastgreedy.community()                         4               0.605          0.961               62                  15                    60                  37 
Walktrap.community()                            4               0.605          0.944               62                  15                    60                  37 
Label.propagation.community()            4               0.600          0.949               64                  14                    59                  37 
Leading.eigenvector.community()             5               0.578          0.925               66                7, 6a                   58                  37 
Edge.betweenness.community()                 6               0.581          0.913               62               11, 1a               61, 1a                38 
aIndicates a situation where the algorithm identified 2 clusters, both of which correspond to the same historical cluster

Table 2. Comparison of community assignment algorithms for the study population of false killer whales, restricted to individ-
uals seen on at least 5 days between 1999 and 2021 and that are at least slightly distinctive with fair or better quality photo-
graphs (n = 174). Community assortativity (rcom) was calculated with 1000 bootstraps. Cluster names shown with number of  

individuals per cluster represent names previously applied to this population (see Baird et al. 2019)

A B

Fig. 3. Weighted social network diagrams generated using the Louvain algorithm with node color and shape indicating social 
clusters: Cluster 1 = yellow circles, Cluster 2 = green triangles, Cluster 3 (including individuals previously considered part of 
Cluster 5) = blue squares, Cluster 4 = purple diamonds. Note that Fastgreedy and Walktrap algorithms produced identical 
cluster assignments. (A) All individuals (1999−2021) considered slightly distinctive or above with fair or better photo quality  

sampled on 5 or more days for all associations (i.e. the restricted dataset). (B) Associations with a half-weight index ≥0.3 
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as sociations were significantly greater than those 
between clusters (t = 76.081, r = 0.698, p < 0.001). 
Within-cluster associations ranged widely among all 
clusters, with average dyadic association indices 
ranging from 0.15 to 0.36 (mean = 0.21, SD = 0.08), 
and maximum association indices ranging from 0.58 
to 0.64 (mean = 0.59, SD = 0.13). Within-cluster asso-
ciation metrics were generally higher for Cluster 2 
(Table 3). Probability plots for the 3 top-ranking algo-
rithms (which had identical cluster assignments) 
indicated that individuals in Cluster 2 were most 
likely to be assigned to alternative clusters (primarily 

Cluster 1 and 3) in bootstrap replicates (Fig. 5). This 
likely reflects that the number of sampling days and 
number of identifications were lowest for Cluster 2 
(32 sampling days and 95 identifications, Table 3). 
Encounters and identifications available for each 
social cluster varied among the islands (Fig. 6). While 
Cluster 1 was seen off all islands, Cluster 2 was seen 
primarily off Hawai‘i Island, Cluster 3 was seen pri-
marily off O‘ahu and Hawai‘i Island, and Cluster 4 
was seen primarily off Maui Nui. 

Within-cluster heterogeneity of associations was 
as sessed by estimating social differentiation and mod-
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Fig. 4. Number of communities identified in bootstrap repli-
cates using the 3 highest-ranking algorithms, organized by 
rank from highest to lowest: (A) Louvain, (B) Fastgreedy, and  

(C) Walktrap

Cluster    Historical  Individuals      Mean           Sum of        Maximum   Sampling    Identifications           Proportion of 
                cluster(s)                             HWI             assoc.              HWI            days                                    individuals identified 
                                                            (SD)               (SD)               (SD)                                                                 per group 
 
Overall    1,2,3,4,5         174         0.06 (0.02)    11.43 (3.68)     0.6 (0.13)         376                 2639                         0.039 
C1                  1                 62          0.19 (0.06)    12.88 (3.74)    0.59 (0.12)       221                 1528                         0.108 
C2                  2                 15          0.36 (0.06)      5.99 (0.9)      0.64 (0.13)        32                    95                            0.199 
C3                3,5               60          0.15 (0.05)    10.08 (2.85)     0.6 (0.15)         108                  651                          0.099 
C4                  4                 37          0.26 (0.07)    10.27 (2.41)    0.58 (0.11)        77                   365                          0.126 

Within                                            0.21 (0.08)    10.77 (3.58)    0.59 (0.13)                                                                     
Between                                        0.01 (0.01)     1.17 (1.33)    0.15 (0.11)

Table 3. Association values, measured as a half-weight index (HWI), for false killer whale clusters generated with the Louvain, 
Fastgreedy, and Walktrap algorithms. Data restricted to individuals seen on at least 5 days between 1999 and 2021 and that 
are at least slightly distinctive with fair or better photo quality (i.e. the restricted dataset, n = 174). Historical cluster refers to  

cluster assignments published in Baird et al. (2019)
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ularity within each cluster. Modularity values did not 
support sub-clustering for any cluster (Table 4), sug-
gesting further division was not warranted, although 
Cluster 3 (Q = 0.262) approached the threshold for 
community division. Associations were considered 
homogeneous (S < 0.3) for the 2 smaller clusters 
(Clusters 2 and 4), and the larger 2 (Clusters 1 and 3) 
showed moderate to high levels of social differentia-
tion that were strongly correlated with true associa-
tions (Table 4). The high level of social differentiation 
estimated for the entire study population compared 
with the average (S = 0.351) of all within-cluster esti-
mates indicates that much of the population-level 
heterogeneity in associations may be due to the pres-
ence of discrete clusters which vary in degree of het-
erogeneity (Table 4). 

Between-cluster associations among the 4 clusters 
identified were not uniform (Fig. 3A). Filtering out 
weak associations within the network by restricting 
associations to those with HWI ≥0.3 removed 74.3% 
of all links among individuals and all associations 
between Clusters 2 and 4 from the main network 
(Fig. 3B). After filtering, associations within Cluster 3 
showed 2 smaller groups of individuals: one corre-
sponding to Cluster 5 from Baird et al. (2019) and 
linking Cluster 1 to the rest of the Cluster 3, the other 
corresponding to historical Cluster 3 (Fig. 3). The vis-
ible partitioning of Cluster 3 supports within-cluster 
association heterogeneity (see above). 

A comparison of membership of Cluster 1 using the 
restricted dataset from 2 time periods (1999−2010 
versus 2011−2021) showed that 91% of Cluster 1 
individuals (40 of 44 individuals) from the first time 
period that were also in the restricted dataset for the 
second time period were in Cluster 1 in both periods. 
Three individuals that were assigned to Cluster 1 
in the first time period were assigned to Cluster 3 
in  the  second, and 1 individual that was assigned 
to Cluster 2 in the first time period was assigned to 
Cluster 1 in the second. 

3.2.  Demographic and mitochondrial haplotype 

assessment by social cluster 

Demographic assessment of clusters in the 1999−
2021 restricted dataset revealed that all of the identi-
fied clusters contained similar mixes of known males 
and known females, and 3 of the 4 included all 4 age 
classes (Table 5). Cluster 2, the smallest of the clus-
ters, contained only adults. This is likely due to our 
method of using the most recent age of individuals, 
combined with the small number of encounters avail-
able for Cluster 2, and thus a higher proportion of 
individuals not meeting the cutoff of 5 sighting days. 
When restrictions by the number of days seen were 
removed, the demographics of Cluster 2 were similar 
to the other 3 clusters (Table 6). 
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A

C

B

Fig. 5. Probability plots for the 3 highest-ranking algorithms, 
which produced identical cluster assignments: (A) Louvain, 
(B) Fastgreedy, (C) Walktrap. Nodes represent individuals, 
and edges represent the number of times a pair of nodes 
was assigned to the same community in bootstrap replicate 
networks using the same community detection algorithm. 
Node color and shape indicate social cluster: Cluster 1 = yel-
low circles, Cluster 2 = green triangles, Cluster 3 (including 
individuals previously considered part of Cluster 5, Baird et  

al. 2019) = blue squares, Cluster 4 = purple diamonds 
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The breakdown of mitochondrial haplotypes by 
cluster indicated that both haplotypes 1 and 2 (see 
Martien et al. 2014) were found both in Cluster 1 and 
Cluster 2, while only haplotype 1 was found in Clus-
ter 3 and Cluster 4. No additional individuals with 
haplotype 5 (found in 1 individual from Cluster 2 by 
Martien et al. 2014) were found. This pattern persisted 
regardless of whether using the restricted dataset (i.e. 
only individuals seen on 5 or more days, Table 5) or 
the relaxed dataset (i.e. including all individuals 
with minimum photo quality and distinctiveness rat-
ings regardless of the number of times seen, Table 6). 
The patterns of differentiation (Table 7) were com -
parable to that reported by Martien et al. (2019), 
with all pairs of clusters exhibiting low but signifi-
cant differentiation in the nuclear dataset, and the 
clusters that include individuals with haplotype 2 

(Clusters 1 and 2) exhibiting signifi-
cant mito chondrial differentiation from 
those that do not (Clusters 3 and 4). 

4.  DISCUSSION 

Analyses of associations over a 23 yr 
period indicate that false killer whales 
around the main Hawaiian Islands live 
in a strongly modular (Q = 0.605) and 
highly differentiated society (S = 1.149, 
SE = 0.023) composed of 4 distinct 
social clusters, with the majority of 
associations occurring within rather 
than be tween clusters. Of the 6 com-
munity detection algorithms used, 3 
(Louvain, Fastgreedy, and Walktrap) 
all had the same highest modularity 
value and highest rcom values, and 
produced the same number and mem-
bership of clusters. Clusters were of 
mixed age and sex (Table 5), and our 
analysis of the 2 time periods for Clus-
ter 1 demonstrated that individuals 
show long-term fidelity to their clus-
ter. Our genetic analyses corroborate 
previous studies indicating limited dis-
persal of individuals between social 
clusters. Specifically, we found weak 
but statistically significant differen-
tiation between all social clusters, 
as  was the case in the analysis of 
Martien et al. (2019), suggesting lim-
ited dispersal be tween social clus-
ters. We also found that haplotype 2 
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Cluster or population     S         SE          r          SE        Q 
 
Entire population       1.149   0.023    0.569   0.024   0.605 
Cluster 1                      0.559   0.054    0.772   0.031   0.134 
Cluster 2                      0.000   0.309    0.000   0.424   0.123 
Cluster 3                      0.729   0.052    0.693   0.044   0.262 
Cluster 4                      0.117  0.1454   0.206   0.133   0.098 

Cluster Mean              0.351

Table 4. Social differentiation (S) estimates and correspon-
ding correlation coefficients (r) for false killer whales from 
the 1999−2021 restricted dataset (i.e. individuals seen on 5 
or more days between 1999 and 2021 and considered 
slightly distinctive or above with fair or better photo quality, 
n = 174) and within social clusters constructed using the 
Louvain, Fastgreedy, and Walktrap algorithms. Within-cluster  

modularity (Q) was not significant for any cluster
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Fig. 6. Breakdown of identifications of each social cluster by island for clusters 
identified with the Louvain algorithm. (Fastgreedy and Walktrap algorithms 
produced identical cluster assignments.) Identifications only include individu-
als seen between 1999 and 2021 from (A) the restricted dataset and (B) the 
relaxed dataset; the latter is included to better reflect the spatial distribution of 
Cluster 2, given the relatively small number of individuals from that cluster  

seen on 5 or more days 
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is restricted to only 2 of the 4 clusters, indicating strong 
fidelity to natal social cluster (Martien et al. 2019). 
Strong social differentiation, high modularity, and/or 
long-term fidelity to groups has been reported in sev-
eral other species of long-lived social odontocetes, in -
cluding short-finned pilot whales Globicephala macro -

 rhyn chus (e.g. Maha
y 2012, 2015, Alves et al. 2013), 
long-finned pilot whales G. melas (e.g. Wie rucka et 
al. 2014, Augusto et al. 2017), pygmy killer whales 
Feresa attenuata (e.g. McSweeney et al. 2009), Risso’s 
dolphins Grampus griseus (e.g. Hartman et al. 2008), 

and killer whales (e.g. Esteban et al. 2016, Ellis et al. 
2017, Tavares et al. 2017). Although differences in 
methodology (e.g. how groups were de fined) limit 
comparisons among studies, our re sults in dicate that 
false killer whales around the main Hawaiian Islands 
live in longitudinally stable groups characteristic of 
these other long-lived social odontocetes. 

Extensive data collected since the early 1970s from 
an endangered population of fish-eating killer whales 
in the eastern north Pacific (colloquially known as 
‘southern resident’ killer whales) show that individu-
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Cluster           Males          Females      Unknown sex       Adults       Subadults, juveniles        Haplotype 1          Haplotype 2 
                                                                                                                      and calves                     by sex                    by sex 
 
Cluster 1           19                  28                    15                    47                         15                          11M, 9F                 5M, 10F 
Cluster 2            5                    7                      3                     15                          0                            3M, 6F                      2M 
Cluster 3           18                  26                    16                    45                         15                         15M, 23F                      - 
Cluster 4           11                  15                    11                    27                         10                          9M, 14F                       - 

Total                  53                  75                    46                   134                        40                         38M, 52F                7M, 10F

Table 5. Demographic information by social cluster of false killer whales from the 1999−2021 restricted dataset (i.e. those con-
sidered slightly distinctive or above with fair or better photo quality that have been seen on 5 or more days, n = 174) identified 
using the Louvain, Fastgreedy, and Walktrap algorithms. Sex (M = male, F = female) was determined genetically, using mor-
phology (for adult males), or by calf presence (for adult females). See Section 2.4 for additional details on sex and age deter-
mination. Non-adults (subadults, juveniles, calves) are combined here, as not all younger individuals could be unambiguously  

assigned to an age class. Mitochondrial haplotypes include 38 individuals sequenced subsequent to Martien et al. (2014)

Cluster           Males          Females      Unknown sex       Adults       Subadults, juveniles        Haplotype 1          Haplotype 2 
                                                                                                                      and calves                     by sex                    by sex 
 
Cluster 1           19                  28                    26                  48(4)                       21                          11M, 9F                 5M, 10F     
Cluster 2           13                  27                    35                  47(3)                       25                          9M, 15F                  4M, 7F      
Cluster 3           25                  30                    34                  55(4)                       30                         22M, 26F                      −           
Cluster 4           12                  15                    28                  33(6)                       16                         10M, 14F                      −           

Total                  69                  99                   124               183(17)                     92                         52M, 64F                9M, 17F

Table 6. Demographic information by social cluster from the 1999−2021 relaxed dataset (i.e. those considered slightly distinctive 
or above with fair or better photo quality; n = 292). See Table 5 caption for details on sex and age determinations. Adults noted 
in parentheses are considered to be ‘likely’ adults. Mitochondrial haplotypes include 49 individuals sequenced subsequent to  

Martien et al. (2014)

Clusters                          Mitochondrial DNA                                                                Nuclear DNA 
compared           n1                 n2                  ΦST            χ2 p-value                 n1              n2             FST           F ’ST        χ2 p-value 
 
1 v. 2                   35                 36               −0.002             0.332                     33              24           0.005        0.009           0.003 
1 v. 3                   35                 43                0.441               <0.001                     33              27           0.006        0.012            <0.001 
1 v. 4                   35                 24                0.365               <0.001                     33               8            0.008        0.016              0.01 
2 v. 3                   36                 43                0.250               <0.001                     24              27           0.006        0.013           0.002 
2 v. 4                   36                 24                0.191             0.006                     24               8            0.013        0.026           0.002 
3 v. 4                   43                 24                    –                      –                         27               8            0.012        0.024           0.046

Table 7. Genetic differentiation between social clusters of false killer whales. For the mitochondrial analysis, 55 samples 
sequenced subsequent to the study by Martien et al. (2014) are included. n values represent sample sizes for the first (1) and 
second (2) cluster in each comparison. Clusters 3 and 4 were not compared in the mitochondrial analysis because they are both  

fixed for haplotype 1
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als live in a hierarchical matrilineal society where 
matrilines (one or more generations of females and 
their offspring) preferentially associate to form pods. 
These pods were defined by Bigg et al. (1990) as 
groups of individuals that spend more than half of 
their time traveling together. While the current study 
was not able to examine fine-scale associations due 
to the nature of the data (e.g. widely-distributed 
groups, incomplete sampling from opportunistic data), 
the clusters we have identified have a similar size, 
though with a lower mean association strength as the 
southern resident killer whale pods studied by Par-
sons et al. (2009), who used a definition of group sim-
ilar to the one used in this study. Given that genetic 
data show that false killer whales in Hawai‘i exhibit 
natal group philopatry (Martien et al. 2019; our 
Table 5), a type of social structure shared by killer 
whales where neither male nor female offspring dis-
perse from the natal group, and given the size of the 
clusters, it is likely that false killer whales also live 
in a hierarchically structured society. Additional re -
search focused at the sub-group level (e.g. individu-
als with strong association values and/or traveling in 
close proximity) would demonstrate whether the 
clusters detected in our study correspond to related 
ex tended matrilines, as is seen in southern resident 
killer whales. 

The median number of southern resident killer 
whale clusters (determined using a Bayesian mixture 
model) varied annually from 2 to 6, but when aver-
aged across years was 4.03 ± 1.02, which is similar to 
the number of currently recognized pods (Parsons et 
al. 2009). Although the level of data for false killer 
whales around the main Hawaiian Islands is con -
sidered sparse for examining annual variations in 
cluster number or membership (Whitehead 2009), 
detailed studies of southern resident killer whale 
associations show that persistent social groups can 
also be dynamic over time (Parsons et al. 2009, Foster 
et al. 2012, Ellis et al. 2017). A comparison of the cur-
rent false killer whale social clusters with historical 
clusters from Baird et al. (2012) revealed that individ-
uals were consistently assigned to the same 3 main 
clusters (Table 3). This is not unexpected given the 
temporal overlap in the datasets, although the num-
ber of years included in the current study is twice as 
many as used by Baird et al. (2012). The fact that the 
membership of Cluster 1 was largely stable when our 
study was broken down into 2 time periods further 
supports the existence of stable associations and pro-
vides evidence of long-term fidelity to clusters. Three 
of the 44 individuals (1 male and 2 females) in Clus-
ter 1 in the first time period were assigned to a differ-

ent cluster in the second time period, and there are a 
number of possible reasons for this different assign-
ment. For example, these individuals may have dis-
persed to a different cluster due to their particular 
social circumstances (e.g. if they had no surviving 
close relatives, similar to a case documented for 
southern resident killer whales) (Weiss et al. 2020). 
The difference in the number of social clusters re -
ported in the current study compared to the earlier 
analysis is most likely due to our larger sample size 
and denser dataset (i.e. more identifications per year 
in recent years, see Fig. 2). Geographical variation in 
sampling effort (Fig. 1) and cluster-specific spatial 
use (Fig. 6) may also play a role in our refinement of 
social cluster numbers and membership. For exam-
ple, Cluster 4 was first described by Baird et al. 
(2012) as a peripheral cluster considered to be part of 
Cluster 1 and was only formally recognized as a sep-
arate cluster by Baird et al. (2019), after sufficient 
survey effort had been undertaken off Lāna‘i, now 
considered a high-use area based on available satel-
lite tag data (Baird et al. 2019). Although a relatively 
newly-described cluster, Cluster 4 was robust to clus-
tering method, had the second-highest mean associ-
ation of any cluster, and was only weakly associated 
with individuals outside the cluster (Table 3, Fig. 3). 

Given that clusters have different high-use areas 
(Baird et al. 2012), the probability of sighting an indi-
vidual a sufficient number of times to be included in 
our analyses may depend in part on its cluster mem-
bership. The relationship between cluster membership 
and capture probability is evident when comparing 
how the number of encounters and identifications 
differs among clusters (Table 3). Relatively fewer sight-
ings of Cluster 2 and 4 suggest that there is less over-
lap between the area(s) where individuals in these 
clusters spend time and the areas surveyed. Such 
heterogeneity in capture probability introduces the 
possibility that additional individuals or even clusters 
exist in the population outside of areas commonly 
surveyed. While new individuals in the population are 
regularly documented, almost all are poorly marked 
young individuals (CRC unpubl. data). Given the ex -
tensive effort throughout the entire span of the main 
Hawaiian Islands (albeit with a leeward bias, Fig. 1), 
it is unlikely that entire clusters have been missed. 
Movement data from satellite-tagged individuals 
from all 4 clusters (Baird et al. 2019, CRC unpubl. 
data) show that individuals from all clusters move 
regularly among islands and often move back and 
forth from the leeward and windward sides of the 
islands (Baird 2016). This dynamic use of the waters 
surrounding the main Hawaiian Islands suggests 
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that any false killer whales that are part of the resi-
dent population would periodically move through 
highly surveyed areas, regardless of preferred habi-
tat. For example, despite extensive survey effort off 
the islands of Kaua‘i and Ni‘ihau, there have been 
relatively few sightings of individuals from this pop-
ulation (Figs. 1 & 6), suggesting that although that 
area is not particularly favored, it is used at least 
occasionally (Baird et al. 2012). 

Overall, the social clusters produced using the 6 
clustering algorithms were in strong agreement both 
with each other and with historical Clusters 1, 2, and 
4 described by Baird et al. (2019), indicating that clus-
ter assignments are persistent over time and robust 
to different clustering methodologies (Table 2). How-
ever, Clusters 3 and 5 from Baird et al. (2019) were 
combined into Cluster 3 using community assign-
ment algorithms in this assessment (Table 3). In addi-
tion to increasing cluster membership, combining 
historical clusters into Cluster 3 resulted in the lowest 
mean association strength of any cluster, including 
Cluster 1, which had slightly more members (Table 
3). In addition, Cluster 3 demonstrated the highest 
level of social differentiation of any cluster (S = 0.729, 
r = 0.693, Table 4), suggesting a high degree of het-
erogeneity among dyadic associations that may be 
indicative of within-cluster social partitioning. When 
removing weak (HWI < 0.3) associations from the 
population, Cluster 3 appeared largely to separate 
into 2 smaller groups that correspond to historical 
Cluster 3 and 5 (Fig. 3B). It is therefore possible that 
this group of individuals is either undergoing a fis-
sion event, as has been observed in killer whales 
(Parsons et al. 2009, Esteban et al. 2016), or that there 
are simply insufficient data to resolve the association 
patterns observed. Given its observed spatial use 
(Fig. 6), additional sampling of Cluster 3 off of O‘ahu 
or Hawai‘i Island is warranted. Cluster 3 is 1 of 3 pri-
mary clusters first described by Baird et al. (2012) 
and has shown a preference for offshore waters off 
eastern O‘ahu and northwest Moloka‘i (Baird et al. 
2019). While the preferred habitat for historical Clus-
ter 3 partially overlaps with that of historical Cluster 
5 (i.e. the waters of O‘ahu and NW Moloka‘i), an 
additional high-use area for Cluster 5 was also iden-
tified offshore of northeast Moloka‘i, indicating 
potential within-cluster variation in habitat prefer-
ences (Baird et al. 2019). Thus, while historical Clus-
ters 3 and 5 have been combined into Cluster 3 in this 
study, within-cluster associations combined with het-
erogeneous movements of individuals within Cluster 
3 observed from satellite tag data suggest that asso-
ciations in this cluster may be more dynamic than in 

the other clusters and that cluster membership should 
be reviewed as more data are collected. 

The length of the study (23 yr) combined with data 
collected from several disparate sources that varied 
by island area and year presented a unique set of 
challenges. Given the long timespan, the catalog 
likely includes many individuals that were born or 
that died part way through the study and thus were 
only sampled a few times. We considered dividing 
the data into smaller time periods for a more detailed 
analysis, which has been done for killer whales (e.g. 
Parsons et al. 2009, Ellis et al. 2017). However, unlike 
the studies by Parsons et al. (2009) and Ellis et al. 
(2017), the size of the study area in Hawai‘i combined 
with a low sighting rate (Baird et al. 2013) resulted in 
a small number of identifications that varied substan-
tially by year (Fig. 2). To minimize the influence of 
rarely seen individuals (such as those that were born 
or died during the study), we restricted the dataset to 
individuals seen on 5 or more days, and further 
restricted it to remove weak associations (Fig. 3B). 
We also set restrictions on photo quality and distinc-
tiveness. Our comparison of the number of clusters 
and cluster membership generated from the com-
plete, relaxed, and restricted datasets showed strong 
agreement across datasets (Table A1), suggesting 
that the results are robust to some forms of bias in the 
data (e.g. reduced photo quality, lower distinctive-
ness, and fewer encounters). 

False killer whales in Hawai‘i are upper trophic-
level predators that consume a variety of large game 
fish such as yellowfin tuna Thunnus albacares and 
mahimahi Coryphaena hippurus (Baird 2016). Previ-
ous research on stable isotope and contaminant lev-
els in the main Hawaiian Islands insular population 
found that both δ13C levels and persistent organic 
pollutant (POP) concentrations varied according to 
social cluster (Kratofil et al. 2020), supporting previ-
ous findings from Baird et al. (2012, 2019) that spatial 
use varies by cluster and suggesting that diet compo-
sition may also differ by social cluster. While Kratofil 
et al. (2020) used 5 different clusters in their analy-
ses, for both POP and δ13C analyses, the sample 
breakdown by cluster was not influenced by our cur-
rent results (i.e. Kratofil et al. 2020 did not compare 
results from Cluster 3 and the formerly recognized 
Cluster 5 for either analysis). Research on the impact 
of prey abundance on the stability and cohesiveness 
of killer whale social groups found that increased 
salmon abundance was positively correlated with 
association strength and with group size (Foster et al. 
2012). The study found that while periods of low prey 
availability did not impact the stability of social 
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groups, it increased the time animals spent foraging, 
limiting the amount of time that could be spent 
socializing. False killer whales in Hawai‘i hunt coop-
eratively and engage in prey sharing, which is 
thought to maintain and reaffirm social bonds among 
individuals (Baird 2016). Decreased prey abundance 
or availability may affect social group cohesion by 
leading to smaller groups that are more spread out, 
limiting social interactions and bonding opportuni-
ties, as has been seen in killer whales (Felleman et al. 
1991, Parsons et al. 2009). However, we have insuffi-
cient information on cluster-specific dietary prefer-
ences to suggest that some clusters may be more 
influenced by this than others. The biomass and 
catch per unit effort (an indirect measure of abun-
dance) of important, upper trophic level prey species 
such as yellowfin and bigeye tuna T. obesus has sig-
nificantly declined in Hawaiian waters since the mid-
1980s (Sibert et al. 2006, Polovina et al. 2009, Oleson 
et al. 2010), coinciding with a substantial decline in 
false killer whale group size, sighting rate, and over-
all abundance over that time period (Baird 2009, 
Reeves et al. 2009, Silva et al. 2013). While the extent 
of population decline is uncertain due to differences 
in survey methods among studies (e.g. aerial vs. ship-
board or small vessel), the largest group observed in 
a 1989 aerial survey (470 individuals; Reeves et al. 
2009) is almost 3 times greater than the population-
wide estimate for the insular population of 167 ani-
mals (SE = 23) by Bradford et al. (2018). It is therefore 
possible that the population decline impacted how 
false killer whales in Hawai‘i associate today, as sig-
nificant declines in the southern resident killer whale 
population have been accompanied by periods of 
more fluid associations within pods (Parsons et al. 
2009). In addition, removal of socially important indi-
viduals (such as adult females with historical knowl-
edge of foraging grounds) from the population can 
disproportionately affect social network cohesion 
and should be considered in management plans of 
vulnerable populations (Williams & Lusseau 2006). 

Our results demonstrate that the 4 social clusters of 
endangered false killer whales identified in this study 
have significant differences in association patterns, 
spatial use, and genetics, and this social structure 
should be considered when addressing management 
concerns for this population. Specifically, plans to 
 mitigate human and fishery interactions should in-
clude evaluation of cluster-specific habitat prefer-
ences and spatial use, and long-term preferential as-
sociations should be considered for mark−recapture 
analyses and abundance estimation. An alyses of fac-
tors that may influence individuals differentially based 

on shared habitats (e.g. Baird et al. 2021) should use 
the 4 social clusters we have identified for this endan-
gered population of false killer whales. 
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Appendix.

Restricted dataset (n = 174)     Relaxed dataset (n = 292)      Complete dataseta (n = 349)                          Notes 
 
Cluster 1                                               No change                                No change                                              
Cluster 2                                               No change                                No change                                              
Cluster 3                                                 1 change                                   1 change                  1 individual moved from C3 to C1 
Cluster 4                                               No change                                No change                                              

aFive individuals seen once formed their own cluster, but aligned most closely with Cluster 2

Table A1. Comparison of cluster number and membership between 1999−2021 datasets with different sets of restrictions. The 
restricted dataset refers to individuals considered slightly distinctive or above with fair or better photo quality that were seen 
on 5 or more days. The relaxed dataset refers to individuals considered slightly distinctive or above with fair or better photo 
quality with no restrictions on the number of days seen. The complete dataset refers to individuals with no restrictions on 
distinctiveness, photo quality, or the number of days seen. Clusters were generated in R using the Louvain algorithm in the R  

package ‘igraph’ 
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