Predicting trends in humpback whale (Megaptera
novaeangliae) abundance using citizen science
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The Great Whale Count (GWGC) is an annual citizen scienca event that monitors changes in humpback whale
(Megaplera novaeangliae) sightings in Maui Gounty during the breeding season. The study includes 15 years of
observations (1995-1896 and 1999-2811) with over 11 000 whale sighlings. We provide a crilical examinafion of the
utility of the citizen science data given ihe challenges of observer-, site- and year-specific biases in counts, as well as
an immeasurable and imperfect detection process. We estimate an annual increase of 5.16% per year (+2.769%), which
closely resembles earlier rend estimates for Hawai'i. We demonsirale how uncertainty estimates in citizen science
data can be strongly influenced by sampling processes, espedially observer effects. Although such effects are now
widely racognized in ecological studies, citizen science data cofien predate the mainstraaming of sampiing protocols
which measure and adjust for Imperfect detectahility. Here, we propose random effect models to minimize such effects
In lisu of detectability techniques, and urge citizen science programs to adapt their protocols to handle observer

pracesses at the pianning and data collection stage.
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INTRODUCTION

Crrzen science is becoming a widespread
tool for ecological and environmental
monitoring {Silvertown 2009; Dickinson e al.
2010}, especially in an era of fiscal restraint by
governments and NGOs. Not only can citizen
science engage members of the public and
promaote environmental stewardship (Tiwmbull &
al. 2000; Cohn 2008), but the data can be useful
in ecosystem monitoring and assessment. A
classic example is the Christmas Bird Count
sponsored by the National Audubon Sodiety m
the U.S.A., which has run every year since 1900
{Greenwood 1994; Gohn 2008; Silvertown
2009). Often, citizen science programs have a
fongevity and geographical breadth which
surpasses other government or academic studies.

However, many citizen science programs have
data collection protocols which complicate
analyses and trouble ecological inferences.
Protocols are commonly designed to facilitate
volunteer coordination and training, rather than
to address modelling assumptions such as
independently and identically distributed (i.i.d.)
errors, Even recognizing the need for updated
and improved methodology can be stymied by
fears of creating incompatibilitics across years.
Given the increasing popularity of citizen science
for ecological inferences, there has been a
growing call to scrutinize citizen science data
and understand their sources of bias and
variation (Dickinson et al. 2010).

This study presents a critical evaluation of the
Maui Great Whale Gount (GWC), a long-term
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humpback whale (Megaplera novaeangliae) dataset
collected using citizen science. The GWGC is one
of the longest running cetacean projects
involving citizen scientists, in operation since
1991, A consistent protocol was used over the
years, consisting of one day of point-counts
conducted simultaneously from multiple coastal
sites along the southern shores of the island of
Mauti (Fig. 1). These sites are located within the
Hawatian Islands Humpback Whale National
Marine Sanctuary. The Sanctuary waters between
the islands of Maui, Meloka’t, Lana’i and
Kaho’olawe are important for calving humpback
whales {Aki ef ¢l 1994) and host some of the
highest densities of breeding humpback whales
in Hawai’t (Mobley ¢ al. 1999; Mobley ef al.
2001} Monitoring the Hawaiian humpback
whale population is important because of its
status as a recovering species and its support of
a thriving whalewatching industry (Gerber and
DeMaster 1999; Utech 2000).

This study’s primary objective is to provide an
updated and accurate trend of humpback whale
sightings for Maui coastal waters from 1995 to
2011 and to compare it to other humpback
whale trend studies in Hawailan waters. In order
to meet this objective in the context of the
available citizen science data, it is necessary to
investigate some of the obvious sources of bias
and variation, as well as assess the suitability of
popular analytical techniques, such as distance
sampling and the Generalized Linear Model
(GLM}, In particular, we investigate: i) imperfect
detectability; 11} a  catch-all notion  of
“overdispersion” to estimale extra variation; iii)
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Table 1. Processes which may produce variation and correlation among counts,

Effect (Nofation) Sampling Process

Ecological Process

Observer (i)

Variation in ability to detect and count whales at distance;

variation in sensitivity to local weather conditions.

Site Locarion (5)

differences in height-above-sea-level.

Year (y)

wind, cloudiness or glare.

Local differences in weather and conditions which influence
detectability, such as wind exposure and susceptibility to glave;

Timing of Great Whale Count (January to March), and
especially the mismarch between the peak of the migration and
the date of sampling; annual differences in the weather during
each year's survey date which influences detectability, such as

Whales aggregate in cevtain

locations along the Maui Nui

{i.e., Maui County).
Popuiation groweh; timing of
migration; variation in
migration destination of the
North Pactfic stock.

observer effects; iv) point-count location (site)
cttects; and v) vear effects,

The latter three effects are comnon in
ecological studies {Kavanagh and Recher 1983;
Gillies et al, 2006; Melbourne and Hastings
2008; Bolker et al 2009). They manifest as
correlations of the respomse variable within
grouping variables, e.g., if whales prefer or
avoid certain habitats (a site effect) or if some
vears have more favourable weather conditions
for spotting whales {a year effect). Perhaps the
mast important elfect for citizen science studies
is the observer effect: the distribution of skilks
of amateurs in detecting objects and following
protocols (Kavanagh and Recher 1983;
DBicfenbach et al, 2008; Koss e al. 2011). When
such effects are not controlled for systematically
through planning and sampling design, as is
usnatly not the case in citizen science, then such
inter-group correlations violate the assumptions
of ii.d. and can lead to improper inferences
when relying upon GLMs. Table 1 lists a varicty
of ecological processes and artefacts of the
sampling regime which may manifest as
persistent site-, year-, and observer-specific
biases in the GWC data.

Most of the processes listed in Table 1
influence whale sightings indirectly by affecting
the ability of observers to detect whales at
distance, such as localized weather phenomena
or the different skills of observers. The explicit
or tacit assumption when using point counts or
cue counts for ecological inferences is that there
is “constant proportionality” in detections
{Norvell et al. 2003), whereby cach observer, on
average, detects objects with the same
probability. If the proportion of detections
changes by site, year, or observer, then trends
in counts may reflect changes in detectability
rather than changes in wildlife abundance
{(Stmons et al. 2007). Therefore, count data
usually require some means to either a) ensure
that detection probability is constant, or b)
measure detection probability as it varies and
adjust the counts accordingly. A wealth of recent
studies have demonstrated the pervasiveness of

imperfect and variable detection probability in
ecological studies (Nichols ef al. 2000; Kéry and
Schmid 2004; Alldvedge e al. 2007, Conroy and
Carroll 2009), and citizen science researchers
should generally proceed from the assmmption
that detectability will be a major issue
(MacKenzie and Kendall 2002).

The GWC was initially designed to facilitate
detectability modelling via distance sampling
{Buckland e al, 2004), by including bearing and
distance estimates in the protocol. Distance
sampling is perhaps the most popular method
to correct for imperfect detectability. However,
citizen science analysts should be aware that the
method is difficult to apply and makes the
strong assumption that objects are distributed
uniformly across the scan-space (e.g., within 3
miles offshore in the GWC context), or that this
distribution is easily estimable and has an
integral function. This assumption appears as

the ax) ~ » relationship in the distance
sampling Likelihood (L,):
Ligy=[ [ 2 Pty assuming uniform density,

P eteeds [ sl
where x Is the distance from the observer; gfx)
is the detection function (e.g., the half-normal
function); and #(x) is the density of counts at
distance x. Anecdotal evidence for this study
suggested that whales were not uniformly
distributed over the scan surface, thereby
violating the assumptions of conventional
distance sampling.

The challenge for the GWC, and for citzen
science studies more generally, is to estimate an
ecological process through the lens of an
impertect sampling regime. Without recourse to
distance sampling or other direct measures of
detection probability, it hecomes necessary to
strive for “constunt proportionality” in detection
probability. Here, we do this by addressing
observer-, year- and site-specilic biases in counts.
Constant proportionality is ceniral to meeting
our primary objective of providing an updated
and accurate trend of humpback whale
abundance for Maui coastal waters.

An additional goal of this study is to provide
a general framewaork to analyze the data and
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Fig. 1. Map of Maui, Hawai'i, including locations of the Great Whale Gount sites considered in this analysis, Whale sightings
were recorded within 4,8 km from shore, represented as the semi-circular buffers centred on each site (black squares).

facilitate similar efforts using GWC-like data on
other Hawaiian islands, as well as citizen science
more generally, We recognize that there may be
better analytical techniques, such as Bayesian
Hierarchical Models (Niemi and Ferndndez
2010; Moore and Barlow 2011) or tweaks to the
distance sampling method which can estimate
m{x) (Marques ¢ al. 2009). However, we feel that
such methods are best considered at the study
design phase, and are very complex and perhaps
misleading to apply after-the-fact. Therefore, we
suggest an analytical paradigm familiar to most
science-trained  professionals, namely the
Generalized Linear Mixed Model (GLMM).
GLMM are useful in reducing biases due to un-
measured processes (Halstead ef afl. 2012)
as well as specific cases when detection
probabilities cannot be measured dirvectly but are
suspected of being highly variable (Mac Nally e
al. 2011).

METHODS

Study area

Humpback whales were counted at a number
of shore-based sites on the island of Maui. We
selected 11 of the most counsistently surveyed
sites for trend analysis (Fig. 1). The study area
for each shore-based site’s encompassed the
coastal waters within approximately 4.8 km (3
statule miles} of each site’s location. Survey areas
varied from 23.44 to 40.03 km? due to the

unique coastal morphology around each site
{e.g., bays versus headlands).

Survey Methodology

Humpback whales were counted during one
day between January 31st to March 11th each
year, which generally coincides with the peak of
the breeding and calving season (Herman and
Antinoja 1977; Baker and Herman 1981; Tyack
and Whitehead 1983; Baker and Herman 1984;
Mobley and Herman 1985; Salden 1988, Au et
al. 2000). The exact dates of the counts were
generally decided based on convenience for
volunteers and staff organizers. Data were
available for 1995, 1996, and 1999-2011.

Sites were monitored by teams of observers
comsisting of a site leader (hereafier, referred to
simply as ‘observer’) and volunteers. The
observers were usually Pacific Whale Foundation
staff and/or naturalists trained in the survey
protocol. Volunteers did not receive formal
training but received on-site instructions from
the observers to assist in the counts,

The observers and volunteers scanned the
waters within 2 4.8 km radius of each site. Scans
began at 8:30 and continued every 20 minutes
until 11:30. Each scan lasted 10 minutes,
followed by a 10 minute pause. During each
scan, volunteers reported all sightings of
hurmpback whale pods swimming within the
survey area, estimated pod size (the number of
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whales in a pod), tock bearing information, and
estimated the distance from the pod to the
shore-site location. Bearings were measured
using a compass. Distances were estimated by
comparing sighting location to a paper grid
{(with bearings) specific to each site. Whales were
considered as being in & pod when they were
seen within 10 body lengths (approximately 150
m) of one another and/or showed characteristic
synchronization of surfacing patterns (Mobley
and Herman 1885). Obscrvers checked and
confirmed all observations. The long scan
duration (10 minutes) is assumed to facilitate
accurate descriptions of pod size, composition,
and distance information, as well as to increase
the probability of detecting long-diving/singing
males (Chu 1948).

During each scan, observers also recorded
percent cloud cover, percent glare on the water,
wind direction and Beaufort sea state (an ordinal
variable for wind speed).

All site locations and whale sightings were
subsequently entered into a Geographic Infor-
mation System (GIS) in the 'R’ programming
language and environment (R Development
Core Team 2010) using the ‘rgeos’ package
(Bivand and Rundel 2012).

Analyses

When statistical analyses were performed, we
used the term “whale sightings” to refer to
counts of all individual whates during a scan. In
these analyses, we are drawing conclusions from
counts of whale sightings, but are extrapolating
to the actual population of Maui County
breeding humpback whales.

In the following sections, we briefly highlight
a number of exploratory visualizations and
analyses on  topics including: imperfect
detectability, non-uniform distribution of counts,
bathymetric relationships, overdispersion and
the presentation of two simple GLMs. These
topics are reviewed only coarsely, inasmuch as
they are a part of the decision process necessary
to specify models 3 and 4. Models 3 and 4
represent the final tools to address this paper’s
ultimate objective, which is (o estimate a trend
of humpback whale population abundance in
Maui County waters based on wends in
sightings.

Detectability and Distance Sampling

There is much research on the phenomena of
imperfect detectability and the problem it poses
for making ecological inferences (Norvell ef ol
2003; Simons et al. 2007; Conroy and Carroll
2009). Here, we do not document a full distance
sampling analysis (whick involves testing
multiple key-functions, covariates, and random
effects, including model selection), as we feel the

technique is ultimately inappropriate for the
GWC data. Nonetheless, we locked for the
presenice of imperfect detectability, by plotting
density of counts versus distance-from-chserver.
Under imperfect detectability, one would expect
higher densities close to the observer, and
declining density away from the observer.

In a related exploration, we also plotted the
density of counts versus distance-from-shore as
(opposed to distance-from-observer), Distance-
from-shore and distance-from-observer are
related but distinct measures: distance-from-
shore contours run parallel to the coast, and are
assumed to be a dominant factor driving the
distribution  of whales, while distance-from-
observer contours radiate in concentric circles
from the point-count location und are assumed

‘to be the dominant factor driving detectability.

When observers are counting objects straight
offshore, the two processes are confounded. In
order to disentangle the confounding effect of
imperfect detectability on whale density, our
preliminary analysis only plotted densities in a
single distance-from-observer bin: the bin with
a distance interval of 4.02 to 4,82 km {2.5-3
miles), This semi-circular bin spans the entire
range of distance-from-shore values in this study,
and should have approximately the same
detection probability along its contour. The goal
of this visualization was to examine whether
there were systematic changes in the counts of
whales with distance-from-shore, which, if true,
is a major viclation of a fundamental assumption
of the conventional distance sumpling likelihood,

We also explored how whale counts changed
according to bathymetry, supposing that depth,
rather than distance-from-shore, was an
alternative feature which might influence the
nearshore distribution of whales, In the same
distance-~to-observer bin (4.02 to 4.82 km), we
compared the observed depths of whale
sightings versus the distribution of available
depths, The empirical depth distribution also
served to estimate a “minimum depth” for
whales (i.e., the 97.5% depth percentile), under
which we assumed that waters were too shallow
to be considered whale habitat, This influenced
our calcutation of area offsets in the GLMs and
GIL.MMs (described below).

Overdispersion

Overdispersion is a technical aspect of count
maodelling which can lead to incorrect inferences
if present in count data (Vives e al. 2008;
Fletcher 2012). We refer to counts being
overdispersed when the variance in counts is
much greater than the mean of counts (asswmned
to be equal in a Poisson distribution). Such extra
variation is expected when a study is missing or
cannot measure variables with high explanatory
power. We expected citizen science sightings to
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be overdispersed because observers were likely
to have a wide variety of competencies, thereby
adding extra variation to the counts.

To check for overdispersion, we used a pre-
analyses method similar to the simulations by
Fleicher (2012). The simulations also serve as a
data exploration exercise by testing which
covariates (observer LD, year, or site covariates)
may explain extra variation in counts. The
simulation proceeded as follows: 1) calculate the
mean of observed counts for each year; ii)
randomly generate Poisson-distributed counts for
each year, based on the observed means and the
same number of observations (using the vpois
function in R); iii) tally the number of instances
when the randomly generated variance is as
large or greater than the observed variance; iv)
repeat for 1000 simulations. The percentage of
simulations which result in variances greater
than the observed variance is a measure of
overdispersion: the percentage should be
approximately 50% if the observed data is
Poisson distributed, while a lower proportion is
evidence of overdispersion.

Adding covariates with high explanatory power
will always decrease overdispersion. Therefore,
we repeated the above simulation, but calculated
means and variances for each year-ohserver-site
combination, supposing that observer and site
effects were influencing detectability and counts.

This simutation also informed which family of
count distributions was appropriate for the
GLM/GLMM trend analyses (e.g., the Negative
Binomial for overdispersed counts) and which
covariates were likely sources of extra variation
in the whale sightings.

GLM trend analyses (models 1 and 2)

We initially tested two GLMs. Model 1 was a
simple regression of counts over years. The
model is specified as:

C ~ NB(M*A, §)
log(h)= B + By

where C are the observed counts at scan ¢ in
year ¥ and site 5; A is the mean for each year;
Ay is the site (s) specific area for count sightings
{i.c., waters within 4.8 km from the observer and
deeper than 13 m, also known as an “offset™);
& is the dispersion parameter for the Negative
Binomial distribution; log(Ajis the link function
to relate the mean of counts to predictor
variables (f); B, is the intercept; and f, is the
trend coefficient,

Model 2 was the samc as model 1, but
included a third explanatory variable for time-
of-day (¢} with coefficient f§,. This was motivated
by anecdotal evidence that there were lower

counts of humpback whales during the late-
morning.

Both models 1 and 2 assume that there is a
constant proportionality in the ratio of detected
versus non-detected sightings, and that ali
counts are independently and identically
distributed (i.1.d.). Rarcly are such assumptions
met it ecology, and probably least of all in
citizen sclence. We examined the latter
assumption by looking for patterns in the
Pearson residuals (difference in expected versus
observed counts, standardized by variance) across
years, observers, sites, and other environmental
variables. Models 1 and 2 allowed us to explore
for patterns in the residuals, and whether there
were persistent observer effects, site effects, and
year effects after removing the variation due to
the main trend over years and over time-of-day.
The identification of such patterns was
important for deciding how to specify the final
models 3 and 4,

The effect sizes and standard errors of model
parameters (8, f, B and f) weve estimated
using Markov Chain Monte Carlo methods
(MCMCG; Gilks et al. 1996; MacKay 2003) using
a component-wise Metropolis-within-Gibbs
algorithm (Metropolis ef al, 1953; Haario ef al.
2005). We ran the MOCMC chain until
convergence was achieved, then ran 40 000
additional draws, thinning the results to about
2 000 samples from which inferences were made.
MCMC techniques are useful for high-
dimensional and/or random effects models (e.g.,
models 3 and 4), rather than simple GLMs, but
were used for models 1 and 2 to ensure
consistency across models.

GLMM trend analyses {models 3 and 4)

This section addresses our main goal; to
provide an cstimate of the trend in humpback
whale abundance by regressing counts of whale
sightings over time. As we cannot use con-
ventional methods such as distance sampling to
disentangle sampling processes from our trend
of interest, we instead used random effects to
parse the extra “nuisance” variation introduced
by various grouping variables: observers, site,
and year effects {Table 1),

GLMMs, also known as mixed effects model
or random cffects models, are very common in
ecology aud the reader is directed to excellent
reviews on the subject (Gillies ¢ al. 2006; Bolker
et al. 2009). They are useful when there are
unmeasured processes which can affect a
parameter of interest (Halstead ef ¢l 2012). In
our case, the GLMMs treat the responsc variable
as being correlated within each level of a
grouping variable (such as years, observers, or
sites) and adds an error term for each grouping
vartable (Schaub and Kéry 2012). In models 3
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and 4, we consider there to be site-specific
biases in counts, which altogether vary around
the mean trend. We do the same for each
individual observer and year. Technically, the
addition of each random effect adds a variance
parameter to our regression model: one for
ohservers (0;7), sites {¢; %), and year effects (o,
3. We can also use these variances to compare
which processes are important in citizen science,
ie., how does variation in chserver effects
compare to the year-to-year variation?

We anticipated strong observer effects because
only 33% of chservers participated in the GWC
for more than two years. Not only is this
troubling from a data-reliability. perspective, but
it also presents technical challenges for solving
the Maximum Likelihood for separute year and
observer effects: there is no unique solution to
parse the variation which is due to a year effect
versus a common effect among all observers in
the same year. For example, if we observe that
one year has particularly high counts, we cannot
conclude whether this is due to something about
the whales or conditions unique to that year
(e.z., a year effect) or if all observers in that year
were coincidentally better at detecting whales
(e.g., an observer effect). In order to parse the
variation between years and observers, we added
a separate observer effect likelihood for each
year, but specified that each likelihood had a
mean of zero and the same variance parameter
for all 15 years. Philosophically, this assumes
that the observers for cach year were drawn from
the same population, with the same mean and
spread in abilities, Therefore, if counts were
higher on average in one year versus another,
the variation was absorbed by the year effects,
rather than observer effects.

As in models 1 and 2, these GLMMs assume
thut there is constant proportionality in
detections after accounting for correlations of
counts within the sume vear site and observer.
In this manner, we do not make the assumption
of i.d.d. The formal specification of model 3 is:

C ~ NB (A*A, §)

logM= By + B*y + & + & + 8100
+ & ye1986 - 5 Eiy=2011

g ~ Norm(0,06.%)
g, ~ Norm(0,5,%

& yminms ~ Norm(0,0;%), &5-i005 ~ Novin(0,6:%),...,
Eiy=g01; — Norm(0, 0, g

where C, &, A, 8, B ,Q, are the same as in
models 1 and 2 {representing variables for whale
sightings, mean of counts, area offset, dispersion
parameter, intercept, and trend coefficient,
respectively); & are site-specific random effects,
normally distributed with a fixed mean of 0 and
estimated variance of gf g are d?fear-speciﬂc
random effects, normally distributed with a fixed
mean of ¢ and estimated variance of g% and
&,y are the per-year random effects of observers,
each normally distributed with means fixed at 0,
and sharing the same estimated variance
parameter of across all years.

We also ran a complementary 4" model which
included a third explanatory variable for time-
of-day () with coefticient j3.

We used MCMC techniques (the Metropolis-
within-Gibbs algorithm; Haario ef al. 2003) to
estimate the distributions of all fixed effects,
random effects, and variance parameters. Such
high-dimensional problems require longer
chains to ensure convergence and adequately
sample the joint-distributions of parameters. Our

Tuble 2. Summary of the number of whales, pods and calves sighted during the 1995-1996 and 1999-2011 Great

‘Whale Count surveys on Maui.

Number of  Number of Tolal whale Total pods Total call

Year Month Day SUrVeys stations sightings sightings sightings
1995 Mar 13! 36 4 173 102 1%
1996 Mar 09 54 6 456 253 58
1997 - - - - - - -
1998 - - - B - - -
1999 Mar 06 63 7 293 189 30
26000 Feb k2 81 9 888 229 30
200F Feb 24 L3 6 615 425 42
2002 Feb 23 108 12 1020 448 gi
2003 Mar 01 108 12 803 451 112
20044 Jan a1 108 12 685 421 61
2005 Fch 26 90 10 499 517 58
2006 Feb 25 108 12 1000 531 9t
2007 Feb 24 108 12 1055 644 119
2008 Feb 23 90 10 1160 571 122
2009 Feb 28 108 12 711 439 71
2010 Mar 06 108 i2 938 b4l 99
2011 Feb 26 bG il 1337 770 126
Total 1323 147 11 133 G 381 1123
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routine required approximately 300 000 chains
thinmed to 2 000 samples, To our knowledge,
there is no available software that can parse all
four sources of variation (fixed effects and 3
variance parameters) and we wrote custom R
functions for the joint-likelihood and MCMC
sampler.

Model Comparison

We compared the four models by calculating
each model’s Akaike Information Criterion (AIC;
Akaike 1974), checking for heterogeneity in
Pearson residuals, and calculating a “posterior-
predictive check” (Gelman 2003) which is a
goodness-of-fit statistic for MCMC cutputs. The
AlC has a simple interpretation for GLMs, but
there is not a standardized AIC for GLMMs,
because the noton of what constitutes =a
“parameter” o be penalized is somewhat
philosophical for random effects: at a minimum,
there is an additional parameter for the variance
of the likelihood function for each grouping
variable; at a maximum, there is an additional
parameter for every level of the random effect,
which results in a larger AIC value (Bolker ¢f al.
2009). The AIC values calculated for models $
and 4 represent the more conservative approach,
and consider every level of the random effect
and its variance to be a parameten

RESULTS

General Results

During the 1995-1996 and 1999-2011 Great
Whale Counts, 1 323 shore-based scans were
completed resulting in the 6 381 whale pod
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Fig. 2. Density of whale sightings versus distance to
ohserver, Hatched lines show the moving-average for
three separate years as an example of the variation
in the way counts change with distanee-to-observer.

sightings and 11 133 humpback whales, 1 123
of which were calves (Table 2), The majority of
pods sighted (49%) were composed of one
whale, 34% of two, 12% of three and 5% of four
or more individuals, The mean pod size was 1.4
{SE=#12.6) whales. Calves were mostly found in
pods composed of two individuals (63%), which
were assumed to be mother-calf pairs, as well as
in pods of three ndividuals (28%), which we
interpret as a mother-calf pair plus a male
escort. Calf sightings (82%) occurred more often
within 3.2 km from shore.

Imperfect Detectability

Tigs. 2 and 3 show the change in count density
with distance-to-ohserver and distance-to-shore,
There appears to be a decrease in whale
sightings with increasing distance-to-observer,
which we interpret as evidence of imperfect
detectability. Unfortunatcly, there also appears to
be a strong increase in whale sightings with
distance-to-shore, spiking around 3 km, which
violates the central assumption of uniform
density inherent to the conventional distance
sampling method, Together, these imply that
imperfect detectability may be an issue, but that
conventional distance sampling 1s not
appropriate for this situation. Our subsequent
methods do not attempt to estimate or correct
for this likely imperfect detection probability.
Instead, we attempted to minimize systernatic
variation in the detection probability so we could
assume “constant proportionality” of sightings
versus true density.,

The distribution of bathymetric values of
observed sightings was significantly different
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Fig. 3. Changes in density of whale sightings with distance-
to-shore, pooled over al years and sites.
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from the available depths (according to the
Kolmogorov-Smirnov non-parametric test of
distributions, with a p-value "< 0.05). Both
distributions peaked at around 50 m depth,
whereas the distribution of whale sightings had
a slightly longer tail at deeper values. 97.5%
percent of sightings occurred at depths deeper
than 13 m, and we used this value as an
empirical “minimum depth” to caleulate the
offset areas in the GLMs and GLMMs (4, in the
model specifications).

Overdispersion

For the overdispersion simulation, only 0.1%
of the simulated counts yielded a variance
greater than or equal to the observed variances.
We considered this strong evidence of
overdispersion, and proceeded with a2 Negative
Binomial distribution to regress counts over
time.

When we simulated the means and variances
of counts at the level of each observer-year-site
combination, the proportion of variances greater
than or equal to the observed variances was
26.6%. This implies that a lot of the extra
variation was due to observer and site effects, We
also interpreted this as evidence for moderate
overdispersion, and so we continued to use a
Negative Binomial family for all four models.

Model Comparison

Table 3 shows the model fits and AIC values
for the 4 models. All four models had adequate
goodness-of-fit statistics, and similar (rends
estimates. However, visual inspection of Pearson
residuals for models 1 and 2 revealed strong

Table 3, Comparisan of models for trend-analyses,

patterning across observers, sites and years.
These patterns motivated the use of the more
complex models 3 and 4, which included
random effects for these grouping variables.

Based on AIC, there was strong support for
model 4 (all other AAIC's where >> 3}, The
MLE trend estimate was 5.2%fyear, with a
confidence interval of 0.00 o 11.2%/year, and
4 p-value of 0.063. A one-tailed p-value (H,: f§
> () was 0.031. There was strong evidence for
a decline in whale abundance over the time-of-
day, with a p-value of 0.002.

Fig. 4 compares the estimated variances of the
three random effects. The variance parameters

.
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Fig. 4. Comparison of the estimated magaitude and
distribution of variance parameters for the three
random eflects: observer, site and year effects.

Trend
Fixed Randem Goodness- + S.E.

Medel Effects Effects Parameters AIC AATC of-fit (Yofyear)
1 By + By nfd By Buor: 8 7478 452 0.349 417 (£0.64)
2 f+ By ¥R nla B, B, 8 7471 450 0.342 492 (+0.68)
3 B + By EE; Euvg=n, Etig=i, ... Euhy=1s, Ba, B, & o, oF 7638 17 0458 4.34 (x2.75)
4 Kt By rpe &€ Bymo Fymi, ., Fymd, B, B B, 8 ol ol o 021 0 0.452  5.16 (£2.76)
B coeflicients for inlercept (0}, year {v) and time of day {#) respectively.
£ random effects for each yeas, site {5} and observer (i), respectively.
6 dispersion paramcter for the Negative Binomial Distribution.
o? variance parameters for the likelihood functions of year, site and observer random effects.

Table 4. Parameter estimates for final model (model 4;.

95% CI 95% CI

Parameter Notation MLE (fower) (upper) p value

Dispersion 8 3.733 3.250 4.543

Iniercept Be 0.122 0065 0.208

Time of day B -0.059 -0.089 -G.019 0.002

Annual “Trend 8, n.0a2 0.000 0.112 0.065

Sire Varinnce a? 0.050 0.018 0.144

Obscrver Variance o? 0,222 0.150 0.305

Year Variance o’ 0.113 0.044 0.248
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suggest that a lot of the variation in the GWC
is due to observer effects (variance of 0.22),
tollowed by year effects and site effects. Figs. 5
and 6 show the temporal and spatal patterns
of random effects for model 4.

All models showed patterning of Pearson
residuals due to environmental variables,
esperially Beaufort sea state, whereby increasing
Beaufort sea state led to lower counts (Fig, 7).
However, this was less pronounced in models 3
and 4, where the decline was only prevalent at
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Fig. 6. Spatial distribution of site-specilic random effects in
whale sightings. The arca of circles indicate the
absolute magnitude of the effect, while colour
indicates directionality: white for greater than 0 and
black for less thaxn 0.

the highest (and least common) DBeaufort
categories of 6 (representing just 5 scans).

DISCUSSION

The contribution of citizen science to
environmental and biological assessments is
impressive, and we welcome its expanding
importance, The vast scale of marine
phenomena may depend on the distributed and
inexpensive effort of many volunteers to
effectively track large-scale changes, especially in
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Fig. 5. Estimated overall trend (5.2%/year, hatched line) and
distribution of year-specific random effects in the
sightings of humpback whates in Maui coastal waters,
Grey lines arc means for year-specific random effects.
Note: there is a break herween 1995 and 1999.
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Fig. 7. Patterning of Pearson residuals for model 4, showing patterns in environmental covariates including: Beaufort sca-
state, percent glare, and percent cloud cover. Hatched line is the moving average.




306 PACIFIC CONSERVATION BIOLOGY

an era of budgetary constraint. Howevey, it is
increasingly important to understand the
potential sources of variation and bias and to be
aware that such long-term, multi-person studies
can present problems for common analytical
methods.

Our random effects model (model 4)
estimated an increase of humpback whale
sightings in the Maui coastal waters of 5.2% per
year. Despite being limited to within 3 miles
from the Maui southern shore, our trend is
nonetheless similar to earlier Hawaiian trend
estimates of a 5.5-7.0% per year proposed by
Calambokidis (1999} and Mobley o al. (2001)
based on photographic mark and recapture
results and aerial survey data, respectively. The
recent SPLASH report (Calambokidis et ol
2008) also estimated an increase of 5.5 to 6.0%
per year for the entire Hawalian Istand chain.
The confidence intervals of our estimate are
very large, spanning 0 to 11.2%/year. The upper
Cl is close to the suggested physiological limit
of population increase for humpback whales
{Zerbini ef al. 2010). Such large uncertainty
means that the estimated trend is of marginal
statistical significance (although the one-tailed p-
value is <0.05). Strictly, this implies that the
GWC and our GLMM do not have the statistical
power to reject a null hypothesis of no trend.
However, the 0.05 Type I error rate is perhaps
not the most relevant statistic for wildlife
managers for whom the mere identification and
description of a trend is more important
than hypothesis testing (Anderson ¢ al. 2000;
Gerrodette 201 1).

Our GLMM facilitates the interpretation of
those processes which may inflate uncertainty in
the GWC. Most of the extra variation is due to
sampling processes, For example, the variance
for observer effects (strictly a sampling process)
is much larger than the year or site effects
(which are an unknown mix of both sampling
and ecological processes; Fig. 4). This realfirms
carlier studies which document significant
observer effects on wildlife abundance estimates
(Kavanagh and Recher 1983; Sauer ef al. 1994;
Diefenbach et al. 2003). Such observer effects are
perhaps especially important in citizen science
programs, where differences between
professionals and volunteers are likely to exist
{Koss et al. 2011), and where the high wrnover
of participants, and the “first-year effect”, has
been well-documented and warned about
{Kavanagh and Recher 1983; Dickinson et al.
2010). Given that GWC participants are only
active for an average of 1.56 years, we would
expect & large spread of abilities.

The mixture of both sampling and ecological
processes within spatial (site location) and
temporal {year of study) covariates makes it

dangerous to test ecological hypotheses. For
example, the GWC canoot definitively answer
whether whales prefer certauin habitats or
locations, because the spatial distribution of
counts is likely a function of detectability (e.g.,
different heights above the sea, exposure to the
sun and wind) as much as habitat. This is
evident in the lack of obvious spatial
autocorrelation of counts among neighbouring
sites {Fig. 6), despite overlapping fields-ofview
(Fig. 1): if the spatial patterning of counts was
truly grounded in ecological phenomena then
we would expect close correlation among
neighbouring and overlapping sites.

Likewise, the sharp breaks and large inter-
annual variation in whale counts (Fig. 5,
especially in 2007-2000) suggests a strong signal
due to sampling processes instead of ecological
processes. Such large fluctuations and cycles in
abundance are well known for a variety of small
mammals and marine taxa (Kendall ef al. 1998),
but allometric scaling suggests that cetaceans
should have less pronounced, longer-pertod
fluctuations (Krukonis and Schaffer 1991),
unlike what is seen in the GWC data. Conversely,
the periods of sceming stability in the GWC
counts (2004-2006) are matched by estimated
increases of approximately 146% from sight-
resight models for the entire Hawaiian
population during the same three year period
{Calambokidis ef af. 2008). We suggest that much
of this inter-annual variation is not variation in
the actual abundance of humpback whales, but
is u result of sampling effects specific to each
year's GWC, such as differences in weather and/
or timing of the GWC versus timing of the
whale migration.

In order for citizen science data to be useful
for management decisions or ecological
inferences, there needs to be a concerted etfort
to decreasc the noise and bias during the data
collection process. Protocols need to measure
the variation due to the observer process,
especially imperfect detectability. For the GWG,
this is not possible with conventional distance
sampling, and the existing protocol should be
replaced with the double-ohserver method
(Nichols ¢t 2. 2000) or the time-of-detection
method (Farnsworth ef of. 2002; Alldredge el al.
2007) which do not assume a uniform density
of whales along the coast. Observer skill is also
& major concern, which entails robust training
of volunteers and validation of abilities. More
attention should be given to retaining observers,
especially given the documentation of “first-year
effects.” Having fewer, well-trained volunteers
would also facilitate easier analysis of ohserver
effects by having fewer parameters to model
{e.g., this study involved 85 separatc levels
necessary in the GLMMs).
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An important conclusion from this study is
that simple Generalized Linear Model
regressions are probably not suitable for citizen
science data and may yield misleading results.
Even in the case of the GWC, which avoids the
common afflictions of other citizen science
datasets, such as haphazard or opportunistic
sampling (Dickinson et al. 2010), we demonstrate
many violations to the central assumption of
independently and identically distributed errors,
as suggested by persisteni patterns in observer,
site and year effects (Figs. 4, 5 and 6). Despite
continued criticism of GLMs for ecological
analyses (Breiman 2001; Elith ef al. 2006), they
remain very popular. Managers should know that
ignoring sampling processes can lead to
underestimates of uncertainty, overconfidence in
the reliability of the data, and perhaps
controversies in drawing ecological inferences.
Iior example, the standard errors of the GLM
trend estimates {£0.64) are much smaller than
those of the GLMMs (£2.72).

Our GLMM performs better than the GLMs
in terms of satisfying the assumptions of
consiant proportionality of detections and
heterogeneity of residuals. The lack of serious
patterning in residuals across environmental
variables, such as Beaufort sea state, suggests
that much of the presumed variation in
detectability is absorbed by the random effects.
While random effects have been used previously
to deal with imperfect detection probability (Mac
Nally et al. 2011), we admit that this is not an
ideal model specification, but a compromise in
liem of formal means to model detection
probability,. Only by specifying a mixture
distribution that explicitly models the sampling
pracess (e.g., detection) and the ccological
process (e.g., count regression), and including
appropriate covariates for either process, can we
be confident that the population trend is not an
artefact of changing sampling effects or
environmental conditions.

We propose this method for an admittedly
deficient protocol that predates the wealth of
recent literature on detection probability and
observer processes (Nichols & al.  2000;
Farnsworth et al. 2002; Conroy and Carroll
2009), Increasingly, it is incumbent upon
researchers to assume g priori that detection
probability and observer effects will be an issue,
and to either incorporate robust mcans of
estimating their ecffects, or disprove their
existence (MacKenzie and Kendall 2002). The
utility of longterm and important datasets, such
as citizen science efforts, will be increasingly
contingent upon their ability to handle ohserver
processes, We urge citizen science managers, of
both new and historic programs, to incorporate
protocols which explicitly handle observer effects
and imperfect detection processes during the

data collection procedure. We hope such
changes in protocol can validate or invalidate ad
hec methods, such as the one proposed in this
study, to deal with sampling processes in
longterm datasets.
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LIST OF SYMBOLS

L(0) equals the distantce sampling likelthood
function.

7(x) Greek letter pi — equals the density of
ohjects at distance x.

C equals total counts of whale sightings in a
scan.

¢ equals the i® observer

y equals the y" year of the study.

s equals the s site in study.

¢ equals the time of day.

NB cquals the Negative Binomial Distribution.

A Greek letter lambda — equals the mean in the
NB distribution.

A. equals the site-specific area offset in NB
regression,







