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ABSTRACT

This study estimates a calving interval for humpback whales from a longterm photo-ID catalogue of 2,973 individuals resighted in Hervey Bay,
East Australia. The study proposes a modification of two existing methods to handle partial identification of sex and age-classes of whales from
visual surveys. One method truncates the data to just breeding females and discards all resighting events prior to the first observed breeding event.
The second method utilises the multi-stage mark recapture (MSMR) framework and multi-event extension to include all resighted individuals and
their entire encounter history. The performance of each method is assessed and the conditioning required to handle ambiguity of sex and age-classes
is detailed, which is subtly different from most other mark-recapture methods. Both truncation and the multi-event methods led to similar estimates
of calving intervals: 2.98 years (95% CI: 2.27–3.51) and 2.78 years (95% CI: 2.23–3.68) respectively. More importantly, estimates were more
sensitive to the exact specification of resighting probabilities among age and sex classes than to the type of conditioning. However, the multi-event
framework resulted in more precise estimates of other important life-history parameters such as apparent survival, and included a wider constituency
of age and sex classes. 
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depending on how non-identified individuals are treated

versus other known classes (Hoffman et al., 2010). The

problem is further exasperated by decreasing resight rates in

a growing population (Forestell et al., 2011; Noad et al., 2011),

whereby more individuals results in fewer opportunities to

resight the same individual. This is especially important to

cetacean studies, which often depend on repeat observations

to ascribe sex, e.g. getting positive confirmation of females’

sex when observed with a calf, or declaring ‘putative males’

as true males based on never being seen with a calf. 

For the EAGVS humpback whales, certainty of age and

sex is common for only one type of observational event:

females in mother-calf pairs, who are known to be in a

breeding state. In contrast, only a fraction of males and

females without calves can be confidently assigned to the

adult class or the non-breeding portion of the population.

Likewise, size-based classification of subadults (Clapham,

2000) is sensitive to distance from the boat, sea state and the

presence of other animals for size comparison, leading to

potential misclassification. Usually, this leads to a large

portion of individuals being classed as ‘unknowns’. This

designation contains an unknown mixture of subadults,

males and females observed only in the non-breeding state.

The goal of this study was to estimate an overall calving

interval for the EAGVS humpback whales, under two

different treatments of the aforementioned difficulties in sex

and class designation. Calving intervals, and the inverse

parameter, birth-rate, are critical to understanding the

reproductive behaviour of long-living, uniparous mammals.

They may also be important at the individual level to

understand body condition (Wiley and Clapham, 1993) as

well as important for population-level processes by
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INTRODUCTION

There is increasing evidence that estimates of life-history and

demographic parameters may be as much a consequence of

sampling and observational attributes as they are a reflection

of the biological processes being measured (Clark and

Gelfand, 2006; Cressie et al., 2009; Halstead et al., 2012;

Pradel et al., 2005) especially for sight-resight models of

cetacean life-history parameters, such as calving intervals.

Such studies are usually boat-based and employ photo-ID

methods to collect encounter histories from often large,

sparse populations. While crucial for the understanding of

cetacean demographics, such studies suffer from a basic

mismatch between ‘terrestrial’ observer and sub-surface

subject, leading to predictable consequences for photo-ID

data. For example, our dataset of the East Australia Group V

Stock (EAGVS) of humpback whales (Megaptera

novaeangliae) faces a number of sampling issues and

analytical challenges, including: 

(1) a large open population, leading to low resighting rates; 

(2) different movement patterns among age and sex classes

leading to skewed sex and age composition of sighted

individuals (Craig and Herman, 2000; Craig and

Herman, 1997; Forestell et al., 2003); and 

(3) infrequent sex-specific behaviours or visual cues of age

(e.g. singing behaviour or genital photos) leading to low

certainty about age and sex (Glockner-Ferrari and

Ferrari, 1990; Glockner, 1983; Tyack, 1981; Winn and

Winn, 1978). 

Such ambiguity can result in biased estimates of life-history

parameters (Kendall et al., 2003) or highly variable estimates
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influencing the population rate-of-increase (Brandão et al.,

2000; Zerbini et al., 2010).

Here two previously posited methods to estimate cetacean

breeding propensity and calculate calving intervals are

evaluated. The first method (hereafter referred to as the

‘truncation method’) was introduced by Barlow and

Clapham (1997) to study humpback whales in the Gulf of

Maine. The ‘truncation’ refers to conditioning the likelihood

on a female’s first observed birthing event, with subsequent

elimination of: (1) females’ encounter histories prior to their

first observed breeding event; as well as (2) the encounter

histories of all animals who have not been observed

breeding, such as non-reproductive females, males, sub-

adults and all other non-sexed/non-aged individuals. Such

truncation is considered unbiased (Conn and Cooch, 2009),

but under extremely low resight rates there is little assurance

that the females observed with calves are a random sample

of the population. Rather, heterogeneity of female breeding

propensity (Rosenbaum et al., 2002) may result in a

truncated sample of higher-frequency breeders and thereby

bias model estimates. Truncation also discards other

potentially important life-history information, such as male

and subadult mortality. The benefit of the truncation method

is that it is relatively simple to implement, with few model

parameters. In its original specification, Barlow and

Clapham (1997) ignored the issue of resight probability, but

the framework is easily extended to include imperfect

detection, as is done in this study.

A second common method to model breeding propensity

is the multi-state mark recapture (MSMR) framework (e.g.

North Atlantic right whale Eubalaena glacialis; Fujiwara and

Caswell, 2002). The method is advantageous as it can

include individuals’ entire encounter histories through a

stage-structured transition matrix and thereby provide

estimates of many important life-history parameters. Here,

the conditional birth-interval probabilities (γ) of Barlow and

Clapham (1997) are equivalent to the transition parameters

for females moving between the breeding and non-breeding

states. Crucially, the method is not conditioned on a female’s

first observed birthing event, and can therefore include all

sex and ages classes, if all states are known without error.

When there is misclassification and age/sex ambiguity, the

‘multi-event’ extension is necessary, which parses

observational errors into two distinct unknowns (Nichols et

al., 2004; Pradel et al., 2005): (1) uncertainty of detection,

i.e. not knowing whether a cow has given birth or not

because she has not been resighted; and (2) uncertainty of

state from misclassification and partial identifiability of

states, i.e. not knowing the sex or age-class of an individual

who has been resighted (Conn and Cooch, 2009).

These two methods are investigated through simulations

and analyses of a long-term humpback whale photo-ID

dataset. The study begins with a matrix-based reformulation

of the Barlow and Clapham (1997) truncation method, then

assesses its performance under low or differential re-sighting

probabilities between breeding and non-breeding females.

Next the method is validated by re-examining the Gulf of

Maine humpback whale dataset (Barlow and Clapham,

1997). To address the main objective of this study, a calving

interval for EAGVS individuals sighted in Hervey Bay is

estimated using model selection among 22 different models

under both the truncation and the multi-event methods.

Finally, select multi-event models are reformulated within a

hierarchical framework to model heterogeneity of breeding

probabilities, including simulations to evaluate the

performance of both the truncation and multi-event

framework under different levels of individual heterogeneity.

METHODS

Field methods

EAGVS humpback whales migrate annually along the eastern

coast of Australia from their breeding grounds along the Great

Barrier Reef to their austral summer feeding areas in the

Southern Ocean (Chaloupka and Osmond, 1999). From 1987

to the present, we have conducted boat-based humpback whale

surveys in Hervey Bay, Queensland (WGS1984 25°15.5’S,

152°51.7’E) between June and November. Hervey Bay is

located in the southern portion of the EAGVS breeding

grounds where migrating mother-calf pairs are typically

observed in late-August to mid-September. The present study

includes data collected since 1987 with the exclusion of 2001

and 2003 when no research was conducted in this area. 

A detailed description of data collection and processing

protocols are given in Kaufman et al. (1993), Chaloupka et

al. (1999), Forestell et al. (2011) and Forestell et al. (2003).

During whale encounters, adults (>12m; Clapham, 2000)

were categorised as being male, female or unknown by

visual observers or using photographic evidence. A breeding

female was identified by its close proximity to an individual

less than 6m in length (i.e. a calf). Males were identified by

photographic evaluation of the genital slit or by the presence

of singing behaviour (Tyack, 1981; Winn and Winn, 1978)

or ‘escorting’ behaviour (Glockner-Ferrari and Ferrari, 1990;

Glockner, 1983).

Fluke photograph quality and distinctiveness were graded

by modified protocols for North Pacific humpback whales

(Calambokidis et al., 2008). Each fluke was given a score of

1 through 5 (good to bad) for five criteria: (1) proportion of

fluke visible; (2) fluke angle; (3) photographer/lateral angle;

(4) focus; and (5) exposure/contrast. A cumulative score was

calculated by summing the scores of the five criteria. Flukes

were not considered for analysis if they: (1) had a cumulative

score exceeding 14; or (2) exceeded a score of 4 for focus or

angle (criteria 4 and 5); or (3) did not have a picture of the

fluke’s central notch.

Simulation and analysis

Imperfect detection and the truncation method

The R language (R Development Core Team, 2010) was used

to generate 1,000 simulations of 1,000 female encounter

histories over 15 years, using assumptions and parameters

similar to the system studied by Barlow and Clapham (1997)

i.e. zero mortality, birthing is only conditional on the time

since the last breeding event and a maximum of five years

are possible between birthing events. Calving histories were

simulated based on similar unconditional birth-probabilities

estimated in their study (0.046, 0.568, 0.318, 0.05, 0.017, for

intervals spanning one to five years). Each five-year history

represents a draw from a multinomial distribution of 32

possible five-year histories (year zero corresponding to a

birthing event).

Imperfect detectability was simulated under nine different
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scenarios representing 3 × 3 combinations of differential

resight probabilities between females-with-calves (p
C
) and

without-calves (p
N
): p

C
= 0.95, 0.5 and 0.24, while p

N
was a

logit-scale function of the p
C
, such that:

where δ varied with values log(1) for equal detection, log(0.5)

and log(0.25) for lower detection. All probabilities were equal

across years (p
N
,t = p

N
,t + 1), but later in the analyses, time-

varying detection probabilities were allowed (hence the t

subscripts in equation 1). The multinomial likelihood function

was constructed in native R language, and was maximised

with respect to the five conditional birth-interval probabilities

using the ‘optim’ function. For each of 1,000 simulations, a

calving interval was calculated based on the weighted-sum

of intervals 1 through 5, whereby the weights were the

unconditional birth-interval probabilities for each interval:

where γ
t
are the conditional birth-interval probabilities for

interval t.

A matrix-based reformulation of the truncation method

Barlow and Clapham (1997) had the luxury of near-complete

encounter histories for every animal in their study, and so

could safely ignore imperfect detection and mortality. Doing

so led to just 32 possible encounter histories. However, the

burden of proof has since shifted to assume that detection

probability is neither perfect nor homogeneous in ecological

studies (MacKenzie and Kendall, 2002). The matrix

formulation of stage-structured populations provides a natural

means to incorporate every permissible state when a female

has not been seen, thereby automating the likelihood

calculation (Fujiwara and Caswell, 2002). Under this

framework, the analysis can be performed in readily available

open-source software such as OpenBUGS or E-SURGE

(Choquet et al., 2009). This is an important improvement on

the Barlow and Clapham likelihood, which requires custom

programming. Later in this study, the matrix-based method is

validated by reanalysing the 1997 data from the Gulf of Maine.

Recast as matrices, the conditional birth-interval

probabilities are transitions in a 7 × 7 row-stochastic matrix

Γ, consisting of 1 breeding state, 5 non-breeding states and

1 final state for death, for a total of 7 states. 

pN ,t =

pC ,te
�

1+ pC ,t (e
�
–1)

(1)
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t
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A distinction is made between the observed event (o) and

the true state (z), the mapping of which is done with the

matrix B. The observed events correspond to the three rows

of B: row 1 is ‘seen with calf’, row 2 is ‘seen without calf’

and row 3 is ‘unobserved’. The observed event 1 (‘seen with

calf’) is unambiguously associated with the ‘breeding

female’ state (z = C), but the observed event 2 (‘seen without

calf’), can be one of five possible non-breeding states (N
1
–

N
5
; columns 2 through 6). Since only adult females are being

considered in the truncation method, each N represents a

non-breeding female at a different time-since-last-birthed.

Each of these states has the option of moving into the next

non-breeding interval or transitioning back into the breeding

state with independent probabilities (γ
1
–γ

5
). Death is row 7,

known as an absorbing state. Apparent survival is a 7 × 7

row-stochastic matrix Φ, and resight probabilities are

parameterised as column-stochastic matrix P
t
.

It should be noted that the five-year maximum breeding

interval was an empirical suggestion from Barlow and

Clapham and was specific to their study (Barlow and

Clapham, 1997). In the above matrix formulation, this

maximum is explicitly coded by the value of 1 in element

Γ[1,6], i.e. females have a 100% probability of breeding

again after five years. This maximum-interval is not

fundamental to the truncation method and could be

increased, decreased, or recast as a simple two-state

Markovian system (see later), as is common in other stage-

structured analyses of breeding states (Fujiwara and Caswell,

2002). An auxiliary interest of this study was to see how 

well the data could resolve estimates of γ
4

and γ
5
, which are

based on rare and difficult to observe events such as a female

not breeding for five or more years. This system will be

hereafter referred to as the ‘memory’ specification of Γ, to

distinguish it from the two-state ‘memoryless’ Γ described

later.

An individual’s encounter history (h|γ) and all permissible

unseen states can then be modelled with the use of an

appropriate matrix multiplication algorithm, as suggested by

Pradel et al. (2005):

where e
i
is the time at which individual i was first sighted

with a calf; P
t
B is the matrix product of time-varying resight

probability matrix P
t
and B; (P

t
B)[o

t
,.] is the row vector

corresponding to event o
t
of the matrix (P

t
B); D(θ) is the

� =

�F 0 0 0 1–�F

0 �F 0 0 1–�F

� �
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matrix with diagonal elements equal to an arbitrary vector θ

and 1
7

is a column vector of 7 ones. 

Using matrices, the calving interval can be derived in a

more general way than equation 2 through the use of

eigenvectors, and proceeds as follows: first, calculate the

dominant positive eigenvector of Γ[–7,–7] (i.e. the

asymptotic distribution of states, minus the absorbing state

7); second, calculate the calving interval as the inverse of the

ratio between element 1 (breeding) versus elements 2

through 6 (non-breeding) of the eigenvector.

Under this matrix formulation, the birth-interval

probabilities are the same as estimated in Barlow and

Clapham (1997) because both are conditioned on a female’s

first observed birthing event. To demonstrate this

equivalency, the Barlow and Clapham Gulf of Maine

humpback whale dataset (provided in their appendix) were

reanalysed, plus inclusion of time-varying resight

probabilities for both females-with-calves and females-

without-calves, as well as including estimates of apparent

survival. The likelihood was calculated using the

RcppArmadillo matrix multiplication library in C++ and

Rcpp (Eddelbuettel and Francois, 2011).

To use the matrix-based truncation method on the EAGVS

dataset, the catalogue was reduced from 2,973 individuals to

just 435 females sighted at least once with a calf. Six

different models were analysed: equal detectability between

females with and without calves (p
N
,
t

= p
C
,
t
), fully

independent resight rates (p
*
,
t
), or a logit-link between 

the two states (p
N
,
t
= f(p

C
,
t
)) according to equation 1 where

resight probabilities differed by the same amount each 

year on the logit-scale (δ). These three scenarios were 

also considered in the context of five non-breeding states

versus six non-breeding states (i.e. expanding matrix Γ to 

8 × 8 dimensions), representing rows 1–3 and 4–6 

in Table 3, respectively. In all cases, birth-interval 

probabilities and apparent survival were time-invariant,

while the resight probabilities were fully time-varying, as

per Forestell et al. (2011). The latter was motivated by 

the idea that individuals should be more difficult to resight

under a rapidly growing population (Noad et al., 2011) 

and resight probabilities should therefore be different every

year.

Markov chain Monte Carlo (MCMC) techniques were

used under a Bayesian inferential paradigm to sample from

the posterior distributions of birth-interval probabilities. The

SCAM adaptive Metropolis-within-Gibbs algorithm was

used to optimise proposal densities and ensure convergence

of the chains (Haario et al., 2005; Roberts and Rosenthal,

2009). Proposal densities were computed from univariate

Normals on the logit-scale. This facilitated the adaptive

MCMC algorithm and is not uncommon in other component-

wise Bayesian samplers (Hall, 2012). Likewise, prior

densities of resight and birthing probabilities were specified

on the logit-scale with Normal densities Norm(0, 1.682),

such that the priors were flat to slightly concave on the

probability scale (Gelman et al., 2008) and helped to 

avoid chain exploration of extreme values on the logit 

scale. Apparent survival was specified with a slightly 

more informative prior of Norm(logit(0.94), 1), based 

on the central tendency of 16 humpback whale studies

reviewed by Zerbini et al. (2010). The large variance of the

priors ensured that estimates were mostly driven by the

likelihood.

Model parsimony and goodness-of-fit were compared by

the Deviance Information Criterion (DIC; Spiegelhalter et

al., 2002) and posterior predictive checks (Gelman et al.,

1996; Gelman and Shalizi, 2012) in addition to assessing

whether the apparent survival and calving intervals were

biologically reasonable. For the posterior predictive check,

we simulated each individuals’ history conditioned on the

year of first having been observed birthing, then compared

simulated data versus observed data using the deviance

function as the discrepancy statistic, as similarly used in

other stage-structured marine mammal studies (Chilvers et

al., 2010).

The MSMR multi-event framework

The above reformulation of the Barlow and Clapham method

(adding resighting probabilities, apparent survival and

variable number of non-birthing states) does not change its

fundamental conditioning on the first observed birthing

event. This is distinctive from other MSMR frameworks

which are conditioned on individuals’ first capture event,

regardless of state and therefore include more observations

and more individuals in the model.

MSMR also assumes certainty of state: lacking such

certainty requires the multi-event extension. The multi-event

allows the inclusion of full encounter histories of females

(conditioned on first capture) as well as all other individuals

in the study (Avril et al., 2012; Conn and Cooch, 2009;

Pradel et al., 2005). This is made possible by incorporating

two additional observational processes into the traditional

MSMR: (1) the process of assigning individuals seen in

events (o
i,t

) to different states z (the mapping of which is

handled by matrix B); and (2) the initial probability of

encountering an individual in different states z (matrix Π
t
).

For the EAGVS dataset, six events were considered, which

correspond to the rows of matrix B: row 1 = ‘identified as a

subadult’; 2 = ‘adult seen with a calf’; 3 = ‘identified as a

non-breeding adult female’; 4 = ‘identified as an adult male’;

5 = ‘unidentified adult’ or ‘unknown adult’; and 6 =

‘unobserved’. Five true states corresponding to the columns

of all matrices: column 1 = ‘subadult’ (J), 2 = ‘breeding

female’ (C), 3 = ‘non-breeding adult female’ (N), 4 = ‘adult

male’(M) and 5 = ‘dead’. Individuals in state z are seen in

event o with probabilities: β
J

= successfully seen as a

subadult; β
A

= successfully seen as an adult (regardless of

sex); β
F

= successfully seen as a non-breeding female (i.e. a

genital photograph); and β
M

= male (observed singing or

confirmed with a genital photograph). Here, the probability

of identifying a mother-calf pair as a breeding female is 1

(unlike in Kendall et al., 2003) because calves maintain a

close physical proximity to their mothers. 

�=

�
J

0 (1– �
A
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Apparent survival is parameterised as matrix Φ, with

different values for subadults, females and males. State-

dependent and time-varying resight probabilities are denoted

by P
t
. The transition matrix Γ is considered to have a

nuisance ‘maturation’ parameter γ
J
(a subadult transitions to

the breeding population, with 50% becoming breeding

females and 50% becoming males) and two female states:

non-breeding and breeding. This specification of Γ is slightly

different from that of the truncation method and will

hereafter be referred to as the ‘memoryless’ matrix

specification of Γ. It is ‘memoryless’ because females may

transition to a breeding or non-breeding state based only on

their previous state and not upon their states up to five years

previously. The memoryless specification is not an essential

feature of the multi-event or MSMR framework and Γ could

have been expanded to include as many non-breeding states

as in the original Barlow and Clapham parameterisation. The

memoryless model is more common in MSMR and was used

here due to counter-intuitive point estimates from the

memory specification (discussed later).

The second important feature of the multi-event extension

is the parameterisation of Π, defined by Pradel (2005) as ‘the

probability of being in state [z
e
] when first encountered [at

time e].’ 

Like the Γ and Φ matrices, it has a column for each state

z, but unlike them, its row does not sum to one. Rather, our

simulations (below) demonstrated that the values of π
C

must

be set to one (i.e. a female initially encountered with a calf

is known 100% to be in the breeding state), while π
J
, π

N
and

π
M

are stochastic and together sum to one. Death is by

definition equal to a zero encounter probability. Under this

formulation, one can interpret Π to weight the resight history

(t > e
i
) by the probability that individual i was originally in

one of the three possible states (akin to the weightings

suggested in Fujiwara and Caswell, 2002).

The likelihood is similarly calculated as in equation 3, but

	 =
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now the initial sighting event o
i
at time t = e

i
is explicitly

modelled:

As before, plausible models were constructed (Table 4)

and comparisons made with the DIC and posterior predictive

checks. Models varied based on the specification of P
t
and

Π. The elements of P
t
were allowed to be fully time varying,

but were linked among different states by three options:

equality (e.g. p
J,t

= p
N,t

for each t), a logit-link to another state

(equation 1), or fully independent. Rather than compute

every combination of linkages among states (81

combinations for P
t
), attention was focused on the following

generalities: p
C

should vary from the other states, because

females with calves are suspected to migrate along coastal

routes more so than the other states (Craig and Herman,

2000; Forestell et al., 2003), while non-breeding females,

males and subadults are more or less similar to each other.

π
J

also varied across models as either a time-invariant or

time-varying parameter. This was motivated by the strong

spike in estimated EAGVS abundances in the late 2000s

(Forestell et al., 2011) which may imply that there is a non-

stable age distribution between subadults and adults. The

ratio of males to females was assumed to be time-invariant

(e.g. π
M
,
*
, conditioned on π

J,t
).

The 14 models had the same priors on the logit-scale, with

γ
Z
, π

Z,t, 
β

Z,
~Norm(0, 1.682). The prior on φ

F
was specified as

previously as in the truncation models. Assuming that males

may have slightly higher mortality than females (Ramp et

al., 2010) φ
M

was set,~Norm(logit(0.92),1). φ
J

was set

~Norm(logit(0.8),1) based on post-yearling estimates of

previous EAGVS studies (Hoffman et al., 2010) and

humpback calves’ survival in the review by Zerbini et al.

(2010).

As detailed above, the component-wise SCAM

Metropolis-within-Gibbs (Haario et al., 2005) sampler was

used to sample from the posterior distributions of model

parameters, within chains between 40,000 to 100,000

(depending on model complexity). All chains were inspected

visually to ensure convergence and efficient mixing.

Individual heterogeneity: simulations

Increasingly, mark-recapture studies utilise hierarchical

models to incorporate individual heterogeneity in life-history

parameters (Lebreton, 1995; Link and Barker, 2005;

Schofield and Barker, 2011) and observation errors (Fletcher

et al., 2012). Not only can random effect models provide a

more realistic portrait of variation (i.e. overdispersion), but

they can re-balance an estimate away from individual

sighting events to the population mean (i.e. ‘shrinkage’,

Halstead et al., 2012). In this way, females who breed more

and are resighted more will not influence a parameter’s

estimate drastically more than an individual who breeds less

and is resighted less. However, less is known about how

hierarchical models perform when a life-history parameter

is estimated from a sample that is contaminated with

individuals for whom the parameter does not apply (e.g. male

subadults should have no influence on breeding propensity).

A further simulation was performed to test the

performance of the truncation method and the multi-event

L(h
i
| o(ei )

) =�
t=ei

D B[o
ei
,]( ) �

t=e
i
+1

T


	D (P
t
�)[o

t
,]( )�

��
�
��15  (4)
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method in the face of individual heterogeneity in birth-

interval probabilities. Individual effects (ε
i
) were simulated

as belonging to a zero-centred Normal distribution with

variance σ
γ
2 and linked to the parameters γ

1
and γ

2
via a logit-

link:

Six simulations were run which differed according to two

values for the variance (σ
γ
2 = 0.5 and 1) and three values for

the resight probabilities of females-without-calves (p
N
,· =

0.5, 0.25, 0.125). These were different from p
C
,· which was

set to 0.5 for all simulations, while p
J
,· and p

M
,· were equal

to p
N
,·. Other life-history parameters were set at γ

1
= 0.1, γ

2

= 0.55 (for a true calving interval of 2.64 years), γ
J

= 0.15,

φ
J

= 0.87, φ
F

= 0.96, φ
M

= 0.91. The process also included a

probabilistic mis-identification of subadults (1–β
J

= 0.7),

males (1–β
M

= 0.9) and females without calves (1–β
N

= 0.9).

Populations were grown from an initial 400 individuals and

sampled after 5 years for 15 years to approximate a stable-

age-distribution. Each scenario was repeated 1,000 times and

parameters were estimated according to either method using

the R optim function.

Individual heterogeneity and the multi-event model

The two most supported multi-event models from the

EAGVS analysis were selected for reanalysis within a

hierarchical context including individual variation in female

birth-interval probabilities. The computational cost of

incorporating individual-level random effects is significant

and was thus only applied to birth-interval probabilities, the

main parameter of interest in this study. 

Priors, proposal densities and MCMC techniques were

applied as previously in the non-hierarchical models. As in

equation 5, individual effects were considered from a Normal

distribution and linked to population parameters γ
1

and γ
2

via

a logit-link. For the group variance parameter, σ
γ
2, a Gamma

prior was applied with shape = 1 and rate = 1.5, with the

intention that the distribution of individual heterogeneity

should at least tend towards being flat on the probability

scale, or at least not concave. The posterior distributions of

parameter estimates were sampled from the series-products

of the Multi-event likelihood (equation 4), the probability

density of the Normal distribution for random effects and

each parameters’ prior density π(θ):

� y,i =

� ye
�i

1+ � y(e
�i –1)

,� i ~ Norm(0,� y

2
) (5)

P(� | h) ~ �
i=1

n

L
Multievent

(h
i
| �

i
,� )

�
��

�
�� �

i=1

n

L
Norm

(�
i
|� )

�
��

�
�� � (� )

RESULTS

Summaries

The EAGVS Hervey Bay catalogue consisted of 2,973

individuals seen over 22 years. Of these individuals, 1,263

(42.5%) were observed as subadults at least once during their

encounter history, 435 (14.6%) were females seen at least

once with a calf, 49 (1.6%) were confirmed males and 2,446

(82.2%) could only be identified as an ‘unknown adult’, i.e.

their sex was not confirmed.

The annual counts of observed events varied heavily

among years. There was a mean of 64.4 sightings of

subadults per year (range of 3–282), 31.5 females-with-

calves per year (1–95), 3 non-breeding females per year (0–

8), 2.4 males per year (0–6) and 96.4 unknown adults per

year (7–289).

Consecutive sightings of the same female were low. There

were 214 resightings of the same female consecutively for

two years, 28 resightings of the same female consecutively

for three years, and 3 for four years consecutively. There

were 17 resightings of the same female with a calf for two

years consecutively and just one instance of the same female

being resighted with a calf for three years consecutively.

Conversely, there were 142 instances of the same female

seen consecutively for two years without a calf, 16 instances

of the same female seen consecutively for three years

without a calf and 2 instances of the same female being seen

without a calf for four years consecutively. 

Simulation of imperfect detection and the truncation

method

The truncation method provided unbiased estimates of the

true calving interval (2.44 years) when the females-with-

calves and the females-without-calves had the same detection

probability (Table 1), even when detection probabilities were

low. The bias was larger and significant with increasing

difference between females with- and without-calves, as well

as at lower overall detection probabilities.

A matrix-based reformulation of the truncation method

For the Gulf of Maine humpback whale data (from the

appendix of Barlow and Clapham, 1997), all three matrix-

based models provided similar estimates of the birth-interval

probabilities and calving intervals (Table 2). There were no

significant differences among parameter estimates or

compared to the point estimates from the original study (row

1 in Table 2). However, the uncertainty in the four and five

year intervals (γ
4
, γ

5
) was very high, with the latter spanning

most of the probability scale (i.e. the 95% CI was ~0.07–0.88
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Table 1 

Simulation of the effects of differential resighting probabilities between females-with-calves and females-without-calves on 

calving interval estimates. 

  Proportional difference in resight probabilities (females-with-calves versus females-

without-calves) on the logit-scale 

  log(1) log(0.5) log(0.25) 

0.95 2.43 (2.42–2.44)1 2.41 (2.4–2.42) 2.38 (2.37–2.39) 

0.5 2.42 (2.4–2.44) 2.24 (2.22–2.25) 1.9 (1.88–1.92) 

Resight probabilities of 

females-with-calves 

0.25 2.43 (2.37–2.47) 2.14 (2.1–2.18) 1.68 (1.64–1.71) 

195% distribution of simulation Maximum Likelihood Estimator. 



for all three models). Resight probabilities for both females

with- and without-calves were high in almost all years (>0.8

for both classes) and similar across model specifications.

For the EAGVS dataset, the truncation method provided

calving interval estimates which varied heavily with the

specification of the resight probabilities: equal resight

probabilities between females with- and without-calves

(models 1 and 4 in Table 3) resulted in much lower calving

interval estimates than independent or logit-linked

specifications (~1.44 years versus between 2.43–3.01 years

respectively). In contrast, changing the maximum birth

interval from 5 years to 6 had less effect on the calving

interval estimates and the differences were not significant

among sister models with the same resight-probability

specifications (i.e. models 1, 2 and 3 versus 4, 5 and 6

respectively in Table 3). The models with the most support

by DIC were 2 and 5, both with a logit-link specification of

p. The better model 2 included 5 birth-interval probabilities

and estimated a calving interval of 2.98 years (95% CI: 2.27–

3.51 years) while 5 estimated 2.69 (2.07–3.41). 

In most model specifications, the uncertainty of the 3rd,

4th, 5th (and 6th) birth-interval probabilities were very large,

with γ
4
, γ

5
and γ

6
having 95% CI’s which spanned most of

the probability interval (e.g. for the best fitting model, the

interval for γ
4
was 0.06–0.8). Furthermore, point estimates

of γ
3
, γ

4
and γ

5
were lower than the estimate of γ

2
, unlike the

Barlow and Clapham results.

All models had similar estimates of apparent survival,

with means varying between 0.92–0.95. The best model (2)

had a point estimate of 0.92 with a long left-tailed

distribution (95% CI: 0.25–0.999).

All models had adequate goodness-of-fit statistics (>>0.05

and <<0.95), but models with a logit-link (including the

model with the lowest DIC) had poorer fit statistics than

other models (e.g. 0.83 for the selected model 2).

The multi-event framework

All multi-event models had better goodness-of-fit statistics

than the truncation models, with most multi-event models

having a value of ~0.5 (range of 0.47 to 0.63). Unfortunately,
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Table 2 

Comparison of the Gulf of Maine humpback whale calving interval data under a matrix-based reparameterisation including resight probabilities and 

apparent survival. 

Birth interval probabilities 

Model g.o.f3 

Calving interval 

(years)4 1 2 3 4 5 

p = 1,  = 11  2.38 (s.e 0.10) 0.04 0.59 0.803 0.61 0.458 

p(f(z),t) (•,•)2 0.21 2.48 (2.34–2.66) 0.04 (0.02–0.08) 0.59 (0.5–0.67) 0.77 (0.6–0.88) 0.65 (0.27–0.9) 0.43 (0.07–0.87) 

p(•,t) (•,•) 0.19 2.49 (2.33–2.64) 0.04 (0.02–0.09) 0.59 (0.51–0.68) 0.77 (0.64–0.89) 0.64 (0.29–0.9) 0.4 (0.06–0.88) 

p(Z,t) (•,•) 0.19 2.51 (2.37–2.7) 0.04 (0.02–0.08) 0.58 (0.5–0.66) 0.76 (0.61–0.88) 0.68 (0.26–0.89) 0.44 (0.08–0.89) 

1Probability of resight p and apparent survival  fixed as 1; from Barlow and Clapham (1997), shown for comparison. 2The first argument of p and  denote 

whether parameters vary by breeding state (Z), or are equal among states (•), or vary according to a logit-link f(Z) among states Z (equation 1). The second 

argument denotes time varying estimates (t) or an estimate equal among all years (•). 3Posterior predictive check. 4Posterior median and 95% credibility 

intervals in parentheses. 
 

Table 3 

Model selection and parameter estimates for East Australia humpback whales, using the truncated dataset. 

Model1 

description Demographic parameter estimates4 

Model 

No. of non-

breeding 
states (N) pC pN 

No. of 

parameters DIC GOF2 

Calving 

Interval 
(years)3 1

 
2 3 4 5 6 F 

1 5 t pC 26 52.8 0.53 1.44 

(1.33–

1.59) 

0.61 

(0.46–

0.71) 

0.94 

(0.85–

0.98) 

0.67 

(0.08–

0.98) 

0.58 

(0.04–

0.97) 

0.58 

(0.05–

0.97) 

– 

0.92 

(0.29– 

1) 

2 5 t f(pC) 27 0 0.83 2.98 

(2.27–

3.51) 

0.08 

(0.05–

0.15) 

0.47 

(0.32–

0.69) 

0.37 

(0.18– 

0.7) 

0.34 

(0.06– 

0.8) 

0.38 

(0.06–

0.83) 

– 

0.92 

(0.25– 

1) 

3 5 t t 46 8.7 0.64 3.01 

(2.06–

3.53) 

0.09 

(0.05–

0.19) 

0.5      

(0.3–    

0.76) 

0.37 

(0.18–

0.83) 

0.36 

(0.05–

0.82) 

0.4     

(0.08– 

0.9) 

– 

0.94 

(0.25– 

1) 

4 6 t pC 27 52.5 0.53 1.43 

(1.33–

1.58) 

0.6  

(0.47–

0.71) 

0.95 

(0.84–

0.98) 

0.68 

(0.09–

0.98) 

0.57 

(0.05–

0.98) 

0.54 

(0.06–

0.97) 

0.52 

(0.05–

0.97) 

0.95 

(0.23– 

1) 

5 6 t f(pC) 28 0.6 0.8 2.69 

(2.07–

3.41) 

0.1  

(0.06–

0.17) 

0.51 

(0.33–

0.75) 

0.42 

(0.19–

0.84) 

0.46 

(0.07–

0.93) 

0.44 

(0.05–

0.94) 

0.85 

(0.13–

0.99) 

0.93 

(0.25– 

1) 
6 6 t t 47 8.2 0.63 2.43 

(1.92–
3.48) 

0.11 

(0.06–
0.22) 

0.56 

(0.32–
0.84) 

0.43 

(0.18–
0.93) 

0.41 

(0.07–
0.95) 

0.47 

(0.06–
0.96) 

0.83    

(0.1– 
0.99) 

0.93 

(0.2–  
1) 

1Columns only indicates those parameters which vary between models. All models include a time invariant parameter for apparent female survival, F. t = 

independent and fully time stochastic; f(pz) = logit-link function to variable pz; and pz = same as variable pz. 
2Posterior predictive check. 3Posterior median 

and 95% credibility intervals. 4
y = conditional birth interval probability for interval y; F = apparent female survival. 

 



the DIC’s could not be compared between the truncation and

multi-event models because they use different data (the

former being a subset of the latter).

The model with the most support by DIC was model 20

(Table 4). The largest differences among DIC values

occurred as a result of differing specifications of time-

invariant and time-varying estimates of π
J
: The latter models

yielded estimates of π
J
,
t
which varied heavily by year, being

low for the time between 1987 to 1993 (<0.1), and much

higher for years after 1996 (>0.48).

Otherwise, poorer fits and larger DIC values were

common among models which had more constraints on

resighting probabilities (models 7, 8, 14 and 15) as compared

to models which had some combination of independent and

logit-linked resight probabilities by sex and age. The models

with the most support (ΔDIC <3), had similar or equal

resight probabilities among males (p
M
) and females without

calves (p
N
), while the probability of resighting a subadult (p

J
)

differed from all other adult classes (much greater than p
M

and p
N
). In general, all resighting rates seemed to decline

over the years (see Fig. 1, based on model 20), consistent

with a growing population.
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Table 4 

Model selection and parameter estimates using the multi-event framework. 

Model description1 Demographic parameter estimates4 

Model 

Model 

framework J pJ pC pN pM 

No. of 

parameters DIC GOF2 

Calving interval 

(years)3 J 1 2 J F M 

7 multievent • pC t pC pC 32 451 0.63 1.5  

(1.39–1.62) 

0.17 

(0.12–

0.24) 

0.8 

(0.73–

0.86) 

0.39 

(0.29–

0.52) 

0.74 

(0.67–

0.79) 

0.99 

(0.98–

1) 

0.9 

(0.87–

0.93) 

8 multievent • f(pC) t f(pC) f(pC) 35 440 0.63 2.83  

(2.31–3.81) 

0.17 

(0.1–

0.27) 

0.13 

(0.07–

0.21) 

0.45 

(0.31–

0.61) 

0.72 

(0.61–

0.79) 

0.99 

(0.97–

1) 

0.93 

(0.9–

0.96) 

9 multievent • pN t t pN 52 385 0.54 2.73  

(2.23–3.37) 

0.11 

(0.07–

0.15) 

0.13 

(0.07–

0.22) 

0.5 

(0.36–

0.63) 

0.8 

(0.74–

0.84) 

0.97 

(0.96–

0.98) 

0.94 

(0.91–

0.96) 

10 multievent • f(pN) t t pN 53 370 0.55 2.75  

(2.33–3.37) 

0.17 

(0.1–

0.27) 

0.13 

(0.07–

0.2) 

0.49 

(0.37–

0.62) 

0.7 

(0.6–

0.78) 

0.98 

(0.96–

0.99) 

0.94 

(0.92–

0.97) 

11 multievent • f(pC) t t pN 53 369 0.54 2.7  

(2.3–3.2) 

0.21 

(0.14–

0.33) 

0.14 

(0.08–

0.23) 

0.51 

(0.4–

0.63) 

0.68 

(0.58–

0.76) 

0.98 

(0.97–

0.99) 

0.94 

(0.91–

0.97) 

12 multievent • f(pN) t t f(pC) 54 426 0.55 2.55  

(2.11–3.14) 

0.15 

(0.09–

0.25) 

0.15 

(0.09–

0.27) 

0.55 

(0.41–

0.68) 

0.74 

(0.64–

0.82) 

0.98 

(0.97–

0.99) 

0.92 

(0.89–

0.95) 

13 multievent • t t t f(pN) 73 386 0.54 2.58  

(2.17–3.33) 

0.38 

(0.21–

0.51) 

0.15 

(0.07–

0.25) 

0.52 

(0.36–

0.65) 

0.53 

(0.44–

0.64) 

0.98 

(0.97–

0.99) 

0.95 

(0.92–

0.97) 

14 multievent t pC t pC pC 51 68.9 0.56 1.5  

(1.39–1.62) 

0.17 

(0.12–

0.24) 

0.82 

(0.74–

0.87) 

0.37 

(0.27–

0.47) 

0.73 

(0.67–

0.8) 

0.99 

(0.97–

1) 

0.87 

(0.85–

0.89) 

15 multievent t f(pC) t f(pC) f(pC) 54 50.8 0.59 3.64  

(2.69–5.07) 

0.13 

(0.08–

0.22) 

0.1 

(0.06–

0.18) 

0.34 

(0.21–

0.49) 

0.71 

(0.62–

0.79) 

0.99 

(0.97–

1) 

0.91 

(0.89–

0.93) 

16 multievent t pN t t pN 71 5.6 0.49 2.96  

(2.36–4.26) 

0.08 

(0.05–

0.13) 

0.11 

(0.06–

0.2) 

0.45 

(0.27–

0.59) 

0.82 

(0.76–

0.87) 

0.97 

(0.95–

0.98) 

0.91 

(0.88–

0.92) 

17 multievent t f(pN) t t pN 72 1.2 0.48 3.27  

(2.48–4.66) 

0.11 

(0.06–

0.19) 

0.1 

(0.06–

0.18) 

0.4 

(0.24–

0.56) 

0.72 

(0.64–

0.8) 

0.97 

(0.96–

0.99) 

0.92 

(0.9–

0.94) 

18 multievent t f(pC) t t pN 72 1.1 0.5 2.89  

(2.36–3.63) 

0.16 

(0.1–

0.26) 

0.12 

(0.07–

0.2) 

0.46 

(0.33–

0.58) 

0.68 

(0.59–

0.77) 

0.98 

(0.97–

0.99) 

0.92 

(0.89–

0.93) 

19 multievent t f(pN) t t f(pC) 73 19.7 0.5 1.15  

(1.1–1.23) 

0.2 

(0.12–

0.31) 

0.9 

(0.85–

0.92) 

0.7 

(0.59–

0.8) 

0.7 

(0.6–

0.78) 

0.99 

(0.97–

1) 

0.9 

(0.87–

0.92) 

20 multievent t t t t f(pN) 92 0 0.49 2.78  

(2.23–3.68) 

0.18 

(0.11–

0.31) 

0.13 

(0.07–

0.22) 

0.48 

(0.32–

0.62) 

0.64 

(0.53–

0.72) 

0.98 

(0.96–

0.99) 

0.92 

(0.9–

0.94) 

21 multievent, 

random 

effects 

t f(pN) t t pN 735 1287 0.49 3.46  

(2.53–4.99) 

0.11 

(0.04–

0.02) 

0.09 

(0.06–

0.02) 

0.36 

(0.05–

0.18) 

0.73 

(0.22–

0.17) 

0.97 

(0.64–

0.53) 

0.92 

(0.96–

0.8) 
22 multievent. 

random 
effects 

t t t t f(pN) 935 1111 0.46 2.94  

(2.23–3.86) 

0.18 

(0.03–
0.02) 

0.12 

(0.1–
0.02) 

0.45 

(0.06–
0.3) 

0.63 

(0.29–
0.21) 

0.98 

(0.53–
0.6) 

0.92 

(0.96–
0.72) 

1Columns only indicate those parameters which vary between models. All models include initial encounter probabilities ( Z), classification errors ( Z), a 

subadult maturation rate ( J), and apparent survival ( Z). t = independent and fully time stochastic; • = time-invariant; f(pz) = logit-link function to variable 

pz; and pz = same as variable pz. 
2Posterior predictive check. 3Posterior median and 95% credibility intervals. 4

J = maturation parameter from subadult to 

adult; y = conditional birth interval probability for interval y; Z = apparent survival. 5Minimum estimate of the number of parameters for random effects 

models, counting only the variance parameter as an extra parameter. 



Apparent survival estimates were consistent across

models, with lower values for subadults (φ
J
, range of means:

0.53–0.82) than males (φ
M
, 0.87–0.95) and both being lower

than females’ survival (φ
F
, 0.97–0.99). The selected model

(20) estimated an apparent survival of 0.64 (95% CI: 0.53–

0.72) for subadults, 0.92 (0.90–0.94) for males and 0.98

(0.96–0.99) for females. In general, the multi-event models

produced more precise estimates of female apparent survival

than the truncation models (e.g. 95% CI of 0.96–0.99 for

model 20 versus 0.25–1 for the truncation model 2.

Maturation rates (γ
J
) varied from (0.08–0.38) across models,

with the best model estimating 0.18 (95% CI: 0.11–0.31).

Point estimates of the calving interval varied widely by

model specifications (range 1.15–3.64 years) and had a

ΔDIC-weighted model average value of 2.97 years. Model

20 had an estimate of 2.78 years (95% CI: 2.23–3.68 years).

Uncertainty estimates were slightly larger than those of the

truncation models.

Individual heterogeneity: simulations

Both the truncation method and the multi-event method

produced parameter estimates which were close to the

simulation specifications and there were no significant

differences in the resulting calving interval estimates among

the different scenarios (Fig. 2). There was a slight negative

bias apparent in both methods, which increased with greater

individual variation (σ
γ
2 = 1) and greater difference between

resight probabilities of breeding versus non-breeding females

(especially p
N
,
*

= 0.125). The multi-event framework was

consistent in producing smaller variance estimates for the

calving interval than the truncation method in all cases and

seemed to have slightly less bias.

Individual heterogeneity and the multi-event model

For the EAGVS, both multi-event random effect models

estimated larger calving intervals and greater uncertainty

than their corresponding non-hierarchical model, e.g. 2.78

years (95% CI: 2.23–3.68) for model 20 versus 2.94 years

(2.23–3.86 years) for model 22. The estimated group

variances of the random effect models were low, e.g. 0.035

(95% CI: 0.018–0.045) for the best model 22. Other

demographic parameters, such as class-specific survival and

maturity, were similar between hierarchical and non-

hierarchical models, with differences of less than 2

percentage points and small differences in uncertainty.

Both hierarchical models had adequate goodness-of-fit

statistics (0.49 and 0.45 for models 21 and 22 respectively),

while DIC values were much larger than the non-hierarchical

models (with ΔDIC values of 1,287.3 and 1,111 respectively

for models 21 and 22). However, the DIC has less theoretical

and empirical support in hierarchical models (Celeux et al.,

2006; Jordan, 2011).

DISCUSSION

This study provides an updated formulation of two methods

to estimate birthing probabilities and derive calving interval

estimates (Barlow and Clapham, 1997; Fujiwara and

Caswell, 2002; Pradel et al., 2005) when considering low

resighting rates and partial-identification of age and sex

classes. We demonstrate the matrix construction and careful

conditioning of likelihoods to model either truncated data or

multi-state data, which are subtly different from most other

sight-resight studies. These updated formulations provide a

more accessible means to conduct these analyses, whereas

the original likelihood from Barlow and Clapham required

custom programming. For example, both methods can be

analysed according to either a frequentist approach, e.g. E-

SURGE (Choquet et al., 2009), or through a latent-state
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Fig. 1. Estimated humpback whale resight probabilities for age-sex classes.

Fig. 2. Simulation results from six scenarios under differential resighting
probabilities between females-with-calves (pC = 0.5) and females-
without-calves (pN = 0.125, 0.25 and 0.5; y-axis), and degree of variation
in individual heterogeneity (σγ2 = 0.5 and 1) in birth-interval
probabilities. Open circles are means of ML Estimators across
simulations according to the truncation method (dark circles and lines)
and the multi-event method (line circles and lines).



Bayesian framework, e.g. the BUGS language (Kéry and

Schaub, 2012). Importantly, the matrix formulation

facilitates the incorporation of other life-history parameters,

such as survival, which may be more important than

reproduction for the population dynamics of long-lived

marine species (Benton and Grant, 1999; Brault and Caswell,

1993; Crowder et al., 1994). 

Modeling implications

Simulations suggested that imperfect detection has little

practical implication when the overall encounter rates are

high and similar between breeding and non-breeding states

(i.e. p
Z

in the range of 0.7 of 0.95). This seemed to be the

case for the Gulf of Maine dataset, where ignoring resight

rates had no effect on the estimates of birth-interval

probabilities. This may be a great relief to some researchers,

as ignoring resight probabilities greatly simplifies analysis.

However, the early studies of the Gulf of Maine population

may be more of an exception than a representative example.

A more typical scenario may be the EAGVS dataset, where

resight rates were crucial to the final estimates of calving

intervals. Furthermore, the benchmark of ecological analysis

is moving towards more explicit modelling of observational

errors versus biological processes (Clark and Gelfand, 2006;

Cressie et al., 2009). De facto inclusion of observational

errors is more conservative, may improve the precision of

estimates (Barker and Kavalieris, 2001) and may provide

useful information on resighting and survival.

Considering the analysis of the EAGVS dataset, the

truncation method and the multi-event framework both

provided similar calving interval estimates with overlapping

95% credibility intervals. Simulations likewise demonstrated

that the two methods had similar performance under strong

individual heterogeneity. Truncating the data resulted in

poorer goodness-of-fit statistics as compared to the multi-

event models, but this is not unexpected considering the large

difference in the number of parameters (e.g. 27 versus 92).

Calving interval estimates varied much more within either

framework based on the particular specification of resight

probabilities. This suggests that it is important to control

variation in detection and encounter probabilities at the design

stage and focus attention on minimising artefacts of sampling

and effort. The one domain where the multi-event framework

showed a distinct benefit was by including class-specific

survival estimates, which are otherwise discarded by the

truncation method (e.g. males). The method also improved

the precision of female apparent survival estimates.

This study provides some initial insights into the ongoing

issue of individual and/or age-specific heterogeneity in life-

history parameters (Robbins, 2007; Rosenbaum et al., 2002).

Our simulations suggest that a combination of individual

heterogeneity, low-resighting rates and partial-identifiability

of non-breeders can lead to slight biases in both the

truncation and multi-event estimates, whereby calving

interval estimates are somewhat lower than the true

population value in either framework. Hierarchical models

with individual random effects may be a promising way to

‘shrink’ the estimate away from the mean of the encounters

towards the mean of the population (Halstead et al., 2012).

As anticipated, the two random effect multi-event models

increased the calving interval estimates from 2.78 to 2.94

years and from 3.27 to 3.46 years (however, both differences

were non-significant). This is consistent with the idea that

photo-ID catalogues are biased to females who breed more

and are more likely to be observed, which subsequently

biases estimates from non-hierarchical models.

We assumed a Normal distribution for individual effects,

as is similarly done in the popular E-SURGE software

(Choquet et al., 2009) and most other ecological studies.

Despite its popularity, the Normal distribution may be an

inadequate distribution when samples are thought to be

skewed (Lachos et al., 2009). In particular, it is unclear how

unclassified individuals (of which only some are actually

breeding females) may influence the random effects

distribution for a female-specific parameter, such as birth-

interval probabilities. In this case, the distribution may be

better understood as a Contaminated Normal distribution

(Tukey, 1960). Conversely, if the act of truncation biases data

towards higher-frequency breeders, than a Skewed Normal

distribution may be more appropriate to rebalance the

posterior distribution to lower values (Bandyopadhyay et al.,

2012; Lachos et al., 2009). In both cases, further research

and simulations are required to investigate the robustness of

the Normal distribution and whether attempts to correct one

bias will merely introduce bias in the opposite direction.

Latent state simulations and clever Gibbs samplers may be

another promising avenue (Clark et al., 2005) by drawing

hyperparameters exclusively from the cohort of (sex-

stochastic) females within a MCMC iteration.

Biological implications

The final models for the truncation method (2) and the multi-

event model (22) estimated calving intervals of 2.98 years

(95% CI: 2.27–3.51) and 2.78 years (95% CI: 2.23–3.68),

respectively. These correspond to birth-rates of 0.33 (0.28–

0.44) and 0.36 (0.27–0.44) and are somewhat lower than the

point estimates of six studies reviewed by Zerbini et al.

(2010) which range between 0.37–0.44. However, some of

these estimates are likely too low, given the difficulty of

observing rare events like a female delaying reproduction for

four years or more. Nonetheless, if these other studies’

estimates are accepted, then there is a seeming disconnect

between the EAGVS slow birth-rate and its strong

population rate-of-increase (Forestell et al., 2011; Noad et

al., 2011). However, such population-level measures

generally have a weak coupling to the birth-rate of long-

living marine species (Benton and Grant, 1999; Brault and

Caswell, 1993; Crowder et al., 1994). Instead, population

parameters arise from interactions among many life-history

parameters, such as age-of-first parturition and survival, the

latter being particularly important in elasticity studies. In

order to make inferences on growth and recruitment, the

multi-event extension seems like a promising approach to

model recruitment-like parameters from backwards-time

encounter histories (Link and Barker, 2005; Pradel, 1996),

given its origins in MSMR. To our knowledge, this has not

been done under partial and mis-identification of states and

will require further development and simulations. Until

further study, it is not possible to compare the birth-rate to

the population rate of increase.

The multi-event method provided more sensible estimates

of survival and facilitated the estimation of male apparent
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survival, which has only a few examples in the scientific

literature on humpback whales. The truncation method

provided female a survival estimate of 0.92 (95% CI: 0.25–

1), which is lower than earlier estimates of 0.945 from the

same data (Forestell et al., 2011), while the multi-event’s

estimate was 0.98 (95% CI: 0.96–0.99) and is more in line

with Zerbini and colleagues’ review of 16 populations in 8

studies (with an average across studies of ~0.95). Male

apparent survival was lower than the estimates for females,

a ranking which is seen in some studies (Ramp et al., 2010)

but is opposite in others (Robbins, 2007). Subadult apparent

survival was lower than many calf survival estimates

(Zerbini et al., 2010) and other subadult survival estimates.

However, literature values vary a lot, from as low as 0.702

(Rosenbaum et al., 2002) to greater than 0.9 (Robbins,

2007). 

The ‘maturation rate’ in this study is a nuisance parameter

without a clear biological interpretation. Its inverse (plus one

year for the time spent as a calf) could be viewed as an

average lower-bound to the age-of-first parturition (6.56

years; 95% CI: 4.23–13.50 years), which is similar to the

lowest values reported by Zerbini et al. (2010) which ranged

between 5.9–11 years. This nuisance specification is not an

essential feature of the multi-event framework, but was

necessary in our case because subadults and adults were

clearly mis-classified as one another. Other datasets can and

should model the true age-of-first parturition if encounter

histories have more observations of calves seen later as

adults. 

Number of non-breeding states

An auxiliary but useful insight comes from the differing

number of female breeding states considered among the

models, i.e. whether a female who has not bred in two years

should be considered to be in a different health and

reproductive state than a female who just bred the previous

year (Wiley and Clapham, 1993). This distinction is codified

in the ‘memory’ versus ‘memoryless’ specifications of Γ.

Barlow and Clapham (1997) conceived of serial transitions

along a finite number of non-breeding states, whereas 

most MSMR studies consider just two memoryless states,

such that females can remain in either state indefinitely.

Neither specification is intrinsic to the truncated or multi-

event likelihood, yet both could be used within either

framework. 

We suggest that the benefit of either specification is

contingent upon having to deal with high or low resight

probabilities. The Barlow and Clapham (1997) study had

high resighting rates with confirmed sightings of females

delaying breeding attempts for 5 or 6 years consecutively.

This facilitated the distinction between γ
3

versus γ
2

and has

an intuitive appeal: it suggests that females who have not

calved in three years are more likely to breed than females

who have not calved in two years. With lower resighting

rates, the data has less power to resolve rarer, longer-interval

calving events, such that γ
3
, γ

4
, and γ

5
have very wide CI’s

which span most of the probability scale. In the case of the

EAGVS, this led to counter-intuitive point estimates of γ
3
, γ

4

and γ
5

which were lower than γ
2
. This is less a commentary

about the breeding decisions of individual females and is

more likely a consequence of the sparse data. In this case,

the memoryless system seems like a reasonable compromise,

whereby females are assumed to decide to breed based only

on their pervious state. An alternative approach could be to

apply stronger priors on later intervals (γ
3
, γ

4
, γ

5
) to reflect

the belief that females should be more likely to breed, not

less likely, as time-since-breeding increases. 

The memoryless system also circumvents the question

about what is the appropriate maximum number of intervals

to consider for the memory specification of Γ. Barlow and

Clapham (1997) answered this question based on their ability

to calculate an unconditional probability 0.984 of breeding

within 5 years, leaving only a small residual probability of

0.016 that females would breed after longer intervals. For

the EAGVS, the point estimate of this residual probability

was 0.123 after five years (model 2) and 0.012 after six

(model 4). By the Barlow and Clapham criteria, this may

suggest that six intervals are adequate for the EAGVS.

Alternatively, this could also be an artefact of the spread of

uncertainty across γ
y
due to low resighting rates. We expected

that adding an extra year would increase the overall calving

interval estimate. Instead, our results suggested that the six-

year models did not result in significantly longer calving

intervals than the five-year models, and in some cases the

calving interval estimates were actually slightly lower. In

either case, the functional specification of resight

probabilities appears to be much more important than the

specific specification of breeding versus non-breeding states.

Again, this reaffirms the need for robust study design and

control over encounter probabilities to strengthen inferences

on the reproductive biology of cetaceans. It also places a high

bar on sight-resight surveys when the model outputs may be

used to inform other biological hypotheses, such as health

condition and reproductive status (Miller et al., 2011; Wiley

and Clapham, 1993) or evolutionary processes via structural

equation modelling (Cubaynes et al., 2011).

CONCLUSIONS

This study reviews the issue of using large amounts of

unclassified individuals in sight-resight analyses for

inferences on life-history parameters. In particular, care is

necessary when conditioning the likelihood, either by

conditioning on just the known breeding females, or with

explicit inclusion of an entry process to include the entire

sample of individuals. Both methods led to similar

conclusions on calving intervals (~3 years for the EAGVS),

but modelling individuals’ entire encounter history, under a

multi-event framework, expanded the range of parameters

and improved the precision of apparent survival. Both

methods are more sensitive to the exact functional

specification of resight probabilities than to different

specifications of the breeding and non-breeding states (e.g.

5 versus 6 maximum intervals, or a 2 stage Markovian

transition matrix). Individual heterogeneity in breeding

propensity, especially under low resighting rates, may 

result in a slight bias in photo-ID catalogues towards more

frequent observations of higher-frequency breeders. Through

simulation and analysis, this study provides weak evidence

that such may bias population estimates. Further simulations

and developments are required to link the calving 

interval methods to population level processes, such as

recruitment. 

J. CETACEAN RES. MANAGE. 13(2): 109–121, 2013 119



ACKNOWLEDGEMENTS

Funding for this work was obtained from Pacific Whale

Foundation members and supporters, as well as the

Queensland Parks and Wildlife Service. Special thanks are

due to Libby Eyre of Macquarie University and Ros and

Gordon Butt of Cat Balou Cruises in Eden, New South

Wales, for providing valuable photo-images and logistical

support. Field operations were conducted in compliance with

all applicable laws and regulations, including annual permits

for the approach and photo-ID of adults and juveniles. We

would like to thank regional authorities for their continued

support, including the New South Wales (NSW) Animal

Research Authority, the NSW Office of Environment and

Heritage, the Queensland Department of Employment, the

Queensland Environmental Protection Agency and Great

Barrier Reef Marine Park Authority.

REFERENCES

Avril, A., Letty, J., Léonard, Y., Santin-Janin, H. and Pontier, D. 2012. A
multi-event model to study stage-dependent dispersal in radio-collared
hares: when hunting promotes costly transience. Ecology 93(6): 1,305–
16.

Bandyopadhyay, D., Lachos, V.H., Castro, L.M. and Dey, D.K. 2012. Skew-
Normal/Independent linear mixed models for censored responses with
applications to HIV viral loads. Biomet. J. 54(3): 405–25.

Barker, R.J. and Kavalieris, L. 2001. Efficiency gain from auxiliary data
requiring additional nuisance parameters. Biometrics 57(2): 563–66.

Barlow, J. and Clapham, P.J. 1997. A new birth-interval approach to
estimating demographic parameters of humpback whales. Ecology 78(2):
535–46.

Benton, T.G. and Grant, A. 1999. Elasticity analysis as an important tool in
evolutionary and population ecology. Trends in Ecological Evolution
14(12): 467–71.

Brandão, A., Butterworth, D.S. and Brown, M.R. 2000. Maximum possible
humpback whale increase rates as a function of biological parameter
values. J. Cetacean Res. Manage. (Suppl.) 2: 192–93.

Brault, S. and Caswell, H. 1993. Pod-specific demography of killer whales
(Orcinus orca). Ecology 74(5): 1,444–54.

Calambokidis, J., Falcone, E.A., Quinn, T.J., Burdin, A.M., Clapham, P.J.,
Ford, J.K.B., Gabriele, C.M., LeDuc, R., Mattila, D., Rojas-Bracho, L.,
Straley, J.M., Taylor, B.L., Urban R, J., Weller, D., Witteveen, B.H.,
Yamaguchi, M., Bendlin, A., Camacho, D., Flynn, K., Havron, A.,
Huggins, J. and Maloney, N. 2008. SPLASH: Structure of populations,
levels of abundance and status of humpback whales in the North Pacific.
Final report for Contract AB133F-03-RP-00078, US Department of
Commerce Western Administrative Center, Seattle, Washington.
[Available at http://www.cascadiaresearch.org/SPLASH/SPLASH-
contract-report-May08.pdf ].

Celeux, G., Forbes, F., Robert, C.P. and Titterington, D. 2006. Deviance
information criteria for missing data models. Bayesian Anal. 1(4): 651–
74.

Chaloupka, M. and Osmond, M. 1999. Spatial and seasonal distribution of
humpback whales in the Great Barrier Reef. pp.89–106. In: Musick, J.A.
(eds). Life in the Slow Lane: Ecology and Conservation of Long-lived
Marine Mammals. American Fisheries Society Symposium, Berthesda,
MD. 265pp.

Chaloupka, M., Osmond, M. and Kaufman, G. 1999. Estimating seasonal
abundance trends and survival probabilities of humpback whales in
Hervey Bay (east coast Australia). Mar. Ecol. Prog. Ser. 184: 291–301.

Chilvers, B.L., Wilkinson, I.S. and Mackenzie, D. 2010. Predicting life-
history traits for female New Zealand sea lions (Phocarctos hookeri):
integrating short-term mark recapture data and population modeling. J.
Agric. Bio. Env. Stat. 15(2): 259–78.

Choquet, R., Rouan, L. and Pradal, R. 2009. Program E-SURGE: a software
application for fitting multi-event models. pp.845–65. In: Thomson, D.L.,
Cooch, E., Conroy, M.J., Patil, G., Gregoire, T., Lawson, A.B. and
Nussbaum, B.D. (eds). Modeling Demographic Processes in Marked
Populations. Springer Science and Business Media, New York. 1131pp.
[Available at: http://www.springerlink.com/content/k24557h05h033551/
abstract/ Accessed June 2012].

Clapham, P.J. 2000. The humpback whale: seasonal feeding and breeding
in a baleen whale. pp.173–96. In: Mann, J., Connor, R.C., Tyack, P.L.
and Whitehead, H. (eds). Cetacean Societies. Field Studies of Dolphins
and Whales. The University of Chicago Press, Chicago. 433pp.

Clark, J.S., Ferraz, G., Oguge, N., Hays, H. and DiConstanzo, J. 2005.
Hierarchical Bayes for structured, variable populations: from recapture
data to life-history prediction. Ecol. 86(8): 2232–44.

Clark, J.S. and Gelfand, A.E. 2006. Hierarchical Modelling for the
Environmental Sciences: Statistical Methods and Applications, Oxford
University Press, Oxford. 205pp.

Conn, P.B. and Cooch, E. 2009. Multistate capture-recapture analysis under
imperfect state observation: an application to disease models. J. Appl.
Ecol. 46(2): 486–92.

Craig, A.S. and Herman, L. 2000. Habitat preferences of female humpback
whales (Megaptera novaeangliae) in the Hawaiian Islands are associated
with reproductive state. Mar. Ecol. Prog. Ser. 193: 209–16.

Craig, A.S. and Herman, L.M. 1997. Sex differences in site fidelity amd
migration of humpback whales (Megaptera novaengliae) to the Hawaiian
Islands. Can. J. Zool. 75(11): 1,923–33.

Cressie, N.A., Calder, C., Clark, J., Hoef, J. and Wikle, C. 2009. Accounting
for uncertainty in ecological analysis: the strengths and limitations of
hierachical modeling. Ecol. Appl. 19(3): 553–70.

Crowder, L., Crouse, D., Heppell, S.S. and Martin, T. 1994. Predicting the
impact of turtle excluder devices on loggerhead sea turtle populations.
Ecol. Appl. 4: 437–45.

Cubaynes, S., Doutrelant, C., Gregoire, A., Perret, P., Faivre, B. and
Gimenez, O. 2011. Testing hypothesis in evolutionary ecology with
imperfect detection: capture-recapture structural equation modeling. Ecol.
93(2): 248–55.

Eddelbuettel, D. and Francois, R.E. 2011. REPP: seamless R and C++
integration. Journal of Statistical Software 40(8): 1–18.

Fletcher, D., Lebreton, J.D., Marescot, L., Schaub, M., Gimenez, O.,
Dawson, S. and Slooten, E. 2012. Bias in estimation of adult survival and
asymptotic population growth rate caused by undetected capture
heterogeneity. Meth. Ecol. Evol. 3(1): 206–16.

Forestell, P., Kaufman, G.D. and Chaloupka, M. 2011. Long term trends in
abundance of humpback whales in Hervey Bay, Australia. J. Cetacean
Res. Manage. (special issue 3): 235–42.

Forestell, P.H., Kaufman, G. and Chaloupka, M. 2003. Migratory
characteristics of humpback whales (Megaptera novaeangliae) in Hervey
Bay and the Whitsunday Islands, Queensland, Australia: 1993–1999.
Final Report to the Environmental Protection Agency, Queensland Parks
and Wildlife Service Brisbane, Australia, October 2003.

Fujiwara, M. and Caswell, H. 2002. Estimating population projection
matrices from multi-stage mark-recapture data. Ecol. 83(12): 3,257–
65.

Gelman, A., Jakulin, A., Pittau, M.G. and Su, Y. 2008. A weakly informative
default prior distribution for logistic and other regression models. Ann.
Appl. Stat. 2(4): 1,360–83.

Gelman, A., Meng, X. and Stern, H. 1996. Posterior predictive assessment
of model fitness via realized discrepancies. Stat. Sinica 6: 733–59.

Gelman, A. and Shalizi, C. 2012. Philosophy and the practice of Bayesian
statistics. Brit. J. Math. Stat. Psych. 66(1): 8–38.

Glockner-Ferrari, D.A. and Ferrari, M.J. 1990. Reproduction in the
humpback whale (Megaptera novaeangliae) in Hawaiian waters, 1975–
1988: the life history, reproductive rates, and behaviour of known
individuals identified through surface and underwater photography. Rep.
int. Whal. Commn 12: 161–69.

Glockner, D.A. 1983. Determining the sex of humpback whales in their
natural environment. pp.447–64. In: Payne, R. (eds). Communication and
Behavior of Whales. AAAS Selected Symposium 76. Westview Press,
Boulder, Colorado. 643pp.

Haario, H., Saksman, E. and Tamminen, J. 2005. Componentwise adaptation
for high dimensional MCMC. Comput. Stat. 20(2): 265–73.

Hall, B. 2012. LaplacesDemon: Software for Bayesian Interference. CRAN.
R package version 12.04.02. [Available at: http://cran.r-project.org/web/
packages/LaplacesDemon/index.html].

Halstead, B.J., Wylie, G.D., Coates, P.S., Valcarcel, P. and Casazza, M.L.
2012. ‘Exciting statistics’: the rapid development and promising future
of hierachical models for population ecology. Anim. Conserv. 15(2): 133–
35.

Hoffman, W.S., Kaufman, G. and Jule, K. 2010. Estimation of survival.
Recruitment and realized growth rates of the East Australia humpback
population (BS-1) using temporal symmetry models. Paper SC/62/SH14
presented to the IWC Scientific Committee, June 2010, Agadir, Morocco
(unpublished). 17pp. [Paper available from the Office of this Journal].

Jordan, M.B. 2011. What are the open problems in Bayesian statistics? Int.
Soc. Bayesian Anal. Bull. 18(1): 568.

Kaufman, G.D., Lagerquist, B.A., Forestell, P.H. and Osmond, M.G. 1993.
Humpback Whales of Australia: a Catalogue of Individual Whales
Identified by Fluke Photographs. 1st ed. Queensland Department of
Environment and Heritage, Brisbane, Queensland, Australia. 207pp.

Kendall, W.L., Hines, J.E. and Nichols, J.D. 2003. Adjusting multistate
capture-recapture models for misclarification bias: Manatee breeding
proportions. Ecol. 84(4): 1,058–66.

120 RANKIN et al.: BAYESIAN ESTIMATE OF AUSTRALIAN HUMPBACK CALVING INTERVAL



Kéry, M. and Schaub, M. 2012. Estimation of survival and movement from
capture–recapture data using multistate models pp.263–313. In: Elsevier,
I. (eds). Bayesian Population Analysis using WinBUGS: A Hierarchical
Perspective, Waltham, MA. 537pp.

Lachos, V.H., Dey, D.K. and Cancho, V.G. 2009. Robust linear mixed
models with skew-normal independent distributions from a Bayesian
perspective. J. Stat. Plan. Infer 139(12): 4,098–110.

Lebreton, J.D. 1995. The future of population dynamic studies using marked
individuals: A statistician’s perspective. J. App. Stat. 22(5–6): 1,009–30.

Link, W.A. and Barker, R.J. 2005. Modeling association among
demographic parameters in analysis of open population capture–recapture
data. Biometrics 61(1): 46–54.

MacKenzie, D.I. and Kendall, W.L. 2002. How should detection probability
be incorporated into estimates of relative abundance? Ecol. 83(9): 2,387–
93.

Miller, C.A., Reeb, D., Best, P.B., Knowlton, A.R., Brown, M.W. and
Moore, M.J. 2011. Blubber thickness and its relationship with
reproduction, life history status and possibly prey abundance in right
whales Eubalaena glacialis and Eubalaena australis. Mar. Ecol. Prog.
Ser. 438: 267–283.

Nichols, J.D., Kendall, W.L., Hines, J.E. and Spendelow, J.A. 2004.
Estimation of sex-specific survival from capture–recapture data when sex
is not always known. Ecol. 85(12): 3,192–201.

Noad, M.J., Cato, D.H. and Paton, D. 2011. Absolute and relative abundance
estimates of Australian east coast humpback whales (Megaptera
novaeangliae). J. Cetacean Res. Manage. (Special Issue 3): 243–52.

Pradel, R. 1996. Utilization of capture-mark-recapture for the study of
recruitment and population growth rate. Biometrics 52: 703–09.

Pradel, R., Gimenez, O. and Lebreton, J.D. 2005. Principles and interest of
GOF tests for multistate capture-recapture models. Animal Biodiversity
Conserv. 28: 189–204.

R Development Core Team, F. 2010. R: A Language and Environment for
Statistical Computing. (Austria, Ed.). R Foundation for Statistical
Computing. ISBN 3–900051–07–0. [Available at: http://www.r-project.org].

Ramp, C., Berube, M., Palsboll, P., Hagen, W. and Sears, R. 2010. Sex-
specific survival in the humpback whale (Megaptera novaeangliae) 
in the Gulf of St. Lawrence, Canada. Mar. Ecol. Prog. Ser. 400: 267–
76.

Robbins, J. 2007. Structure and dynamics of the Gulf of Maine humpback
whale population. Doctoral Thesis, University of St Andrews, Scotland.
[Available at: http://hdl.handle.net/10023/328].

Roberts, G.O. and Rosenthal, J.S. 2009. Examples of adaptive MCMC. J.
Comp. Graph. Stat. 18(2): 349–67.

Rosenbaum, H.C., Weinrich, M.T., Stoleson, S.A., Gibbs, J.P., Baker, C.S.
and DeSalle, R. 2002. The effect of differential reproductive success on
population genetic structure: Correlations of life history with matrilines
in humpback whales of the Gulf of Maine. J. Hered. 93(6): 389–99.

Schofield, M.R. and Barker, R.J. 2011. Full open population capture–
recapture models with individual covariates. J. Agric. Biol. Environ. Stat.
16(2): 253–68.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and Van Der Linde, A. 2002.
Bayesian measures of model complexity and fit. J. R. Stat. Soc. (Series
B Stat. Methodol.) 64(4): 583–639.

Tukey, J.W. 1960. A survey of sampling from contaminated distributions.
pp.448–85. In: Olkin, I., S. G. Ghurye, S.G., Hoeffding, W., Madow, W.G.
and Mann, H.B. (eds). Contributions to Probability and Statistics: Essays
in Honor of Harold Hotelling. Standford University Press, Stanford, CA.
517pp.

Tyack, P. 1981. Interactions between singing Hawaiian humpback whales
and conspecifics nearby. Behav. Ecol. Sociobiol. 8: 105–16.

Wiley, D.N. and Clapham, P.J. 1993. Does maternal condition affect the 
sex ratio of offspring in humpback whales. Anim. Behav. 46(2): 321–
24.

Winn, H.E. and Winn, L.K. 1978. The song of the humpback whale
Megaptera novaeangliae in the West Indies. Mar. Biol. 47(2): 97–114.

Zerbini, A.N., Clapham, P.J. and Wade, P.R. 2010. Assessing plausible rates
of population growth in humpback whales from life-history data. Mar.
Biol. 157(6): 1225–36.

J. CETACEAN RES. MANAGE. 13(2): 109–121, 2013 121




